On the Generalization Analysis of Adversarial Learning

被引:0
|
作者
Mustafa, Waleed [1 ]
Lei, Yunwen [2 ]
Kloft, Marius [1 ]
机构
[1] Univ Kaiserslautern, Dept Comp Sci, Kaiserslautern, Germany
[2] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
关键词
BOUNDS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many recent studies have highlighted the susceptibility of virtually all machine-learning models to adversarial attacks. Adversarial attacks are imperceptible changes to an input example of a given prediction model. Such changes are carefully designed to alter the otherwise correct prediction of the model. In this paper, we study the generalization properties of adversarial learning. In particular, we derive high-probability generalization bounds on the adversarial risk in terms of the empirical adversarial risk, the complexity of the function class, and the adversarial noise set. Our bounds are generally applicable to many models, losses, and adversaries. We showcase its applicability by deriving adversarial generalization bounds for the multi-class classification setting and various prediction models (including linear models and Deep Neural Networks). We also derive optimistic adversarial generalization bounds for the case of smooth losses. These are the first fast-rate bounds valid for adversarial deep learning to the best of our knowledge.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Generalization analysis of adversarial pairwise learning
    Wen, Wen
    Li, Han
    Wu, Rui
    Wu, Lingjuan
    Chen, Hong
    Neural Networks, 2025, 183
  • [2] Generalization Bounds for Adversarial Contrastive Learning
    Zou, Xin
    Liu, Weiwei
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24 : 1 - 54
  • [3] Domain Generalization with Adversarial Feature Learning
    Li, Haoliang
    Pan, Sinno Jialin
    Wang, Shiqi
    Kot, Alex C.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5400 - 5409
  • [4] Generalization Bounds for Adversarial Metric Learning
    Wen, Wen
    Li, Han
    Chen, Hong
    Wu, Rui
    Wu, Lingjuan
    Zhu, Liangxuan
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4397 - 4405
  • [5] On the Generalization of Face Forgery Detection with Domain Adversarial Learning
    Weng Z.
    Chen J.
    Jiang Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (07): : 1476 - 1489
  • [6] Adversarial Discriminative Feature Separation for Generalization in Reinforcement Learning
    Liu, Yong
    Wu, Chunwei
    Xi, Xidong
    Li, Yan
    Cao, Guitao
    Cao, Wenming
    Wang, Hong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Robust Semantic Parsing with Adversarial Learning for Domain Generalization
    Marzinotto, Gabriel
    Damnati, Geraldine
    Bechet, Frederic
    Favre, Benoit
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES(NAACL HLT 2019), VOL. 2 (INDUSTRY PAPERS), 2019, : 166 - 173
  • [8] Stability Analysis and Generalization Bounds of Adversarial Training
    Xiao, Jiancong
    Fan, Yanbo
    Sun, Ruoyu
    Wang, Jue
    Luo, Zhi-Quan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] Adversarial Teacher-Student Representation Learning for Domain Generalization
    Yang, Fu-En
    Cheng, Yuan-Chia
    Shiau, Zu-Yun
    Wang, Yu-Chiang Frank
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] MADG: Margin-based Adversarial Learning for Domain Generalization
    Dayal, Aveen
    Vimal, K. B.
    Cenkeramaddi, Linga Reddy
    Mohan, C. Krishna
    Kumar, Abhinav
    Balasubramanian, Vineeth N.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,