Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity

被引:3
|
作者
Alarcon, Salomon [1 ]
Garcia-Melian, Jorge [2 ,3 ]
Quaas, Alexander [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso 1680, Chile
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[3] Univ La Laguna, Fac Fis, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, San Cristobal la Laguna 38203, Spain
来源
关键词
PARABOLIC EQUATIONS; RESTRICTIONS;
D O I
10.1007/s11854-012-0030-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the nonlinear elliptic problem -Delta u+vertical bar u vertical bar(p-1)u+vertical bar del u vertical bar(q)=f in R-N , where p > 1 and q > 0. We show that if f is an element of L-loc(r) (R-N ) for suitable r >= 1, then there exists a distributional solution of the equation, independently of the behavior of f at infinity. We also analyze the uniqueness of this solution in some cases.
引用
收藏
页码:83 / 104
页数:22
相关论文
共 50 条