Effect of organic small-molecule hole injection materials on the performance of inverted organic solar cells

被引:4
|
作者
Li, Jie [1 ]
Zheng, Yifan [1 ]
Zheng, Ding [1 ]
Yu, Junsheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Informat, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
来源
JOURNAL OF PHOTONICS FOR ENERGY | 2016年 / 6卷 / 03期
基金
中国国家自然科学基金;
关键词
hole injection material; N; '-bis(1-naphthalenyl)-N; '-bis-phenyl-(1; 1; '-biphenyl)-4; 4; '-diamine; hole transport layer; molybdenum oxide; organic solar cells; INDIUM-TIN-OXIDE; TRANSITION-METAL OXIDES; POLAR-SOLVENTS; TRANSPORT; ELECTRON; TEMPERATURE; MOLYBDENUM; MOBILITIES; GENERATION; LAYERS;
D O I
10.1117/1.JPE.6.035502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the influence of small-molecule organic hole injection materials on the performance of organic solar cells (OSCs) as the hole transport layer (HTL) with an architecture of ITO/ZnO/P3HT:PC71BM/HTL/Ag has been investigated. A significant enhancement on the performance of OSCs from 1.06% to 2.63% is obtained by using N, N'-bis(1-naphthalenyl)-N, N'-bis-phenyl-(1, 1'-biphenyl)-4, 4'-diamine (NPB) HTL. Through the resistance simulation and space-charge limited current analysis, we found that NPB HTL cannot merely improve the hole mobility of the device but also form the Ohmic contact between the active layer and anode. Besides, when we apply mix HTL by depositing the NPB on the surface of molybdenum oxide, the power conversion efficiency of OSC are able to be further improved to 2.96%. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Common and inverted heterojunction small-molecule organic solar cells
    Wu, Bing
    Li, Yan-Wu
    Liu, Peng-Yi
    Hou, Lin-Tao
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2010, 21 (03): : 363 - 365
  • [2] Stability of diketopyrrolopyrrole small-molecule inverted organic solar cells
    Jeon, Il
    Sakai, Ryohei
    Nakagawa, Takafumi
    Setoguchi, Hiroki
    Matsuo, Yutaka
    ORGANIC ELECTRONICS, 2016, 35 : 193 - 198
  • [3] The effect of barrier performance on the lifetime of small-molecule organic solar cells
    Hermenau, Martin
    Schubert, Sylvio
    Klumbies, Hannes
    Fahlteich, John
    Mueller-Meskamp, Lars
    Leo, Karl
    Riede, Moritz
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 97 : 102 - 108
  • [4] The effect of processing conditions on performance of small-molecule organic solar cells
    Zhang, Hui
    Wang, Congxu
    Li, Xiao
    Jing, Jianli
    Sun, Youyi
    Liu, Yaqing
    SOLAR ENERGY, 2017, 157 : 71 - 80
  • [5] Development of small-molecule materials for high-performance organic solar cells
    Haijun Fan
    Xiaozhang Zhu
    Science China(Chemistry), 2015, (06) : 922 - 936
  • [6] Development of small-molecule materials for high-performance organic solar cells
    Haijun Fan
    Xiaozhang Zhu
    Science China Chemistry, 2015, 58 : 922 - 936
  • [7] Development of small-molecule materials for high-performance organic solar cells
    Haijun Fan
    Xiaozhang Zhu
    Science China Chemistry, 2015, 58 (06) : 922 - 936
  • [8] Development of small-molecule materials for high-performance organic solar cells
    Fan, Haijun
    Zhu, Xiaozhang
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (06) : 922 - 936
  • [9] Triphenylamine-based organic small-molecule interlayer materials for inverted perovskite solar cells
    Doyranli, Ceylan
    Choi, Fatma Pinar Gokdemir
    Alishah, Hamed Moeini
    Koyuncu, Sermet
    Gunes, Serap
    San, Nevim
    ORGANIC ELECTRONICS, 2022, 108
  • [10] The Asymmetric Strategy of Small-Molecule Materials for Organic Solar Cells
    Hu, Haotian
    Ge, Jinfeng
    Chen, Zhenyu
    Song, Wei
    Xie, Lin
    Ge, Ziyi
    ADVANCED ENERGY MATERIALS, 2024, 14 (17)