HIERARCHICAL BAYESIAN ANALYSIS OF SOMATIC MUTATION DATA IN CANCER

被引:2
|
作者
Ding, Jie [1 ,2 ]
Trippa, Lorenzo [1 ,2 ]
Zhong, Xiaogang [3 ]
Parmigiani, Giovanni [1 ,2 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Georgetown Univ, Dept Biostat Bioinformat & Biomath, Washington, DC 20057 USA
来源
ANNALS OF APPLIED STATISTICS | 2013年 / 7卷 / 02期
基金
美国国家科学基金会;
关键词
Somatic mutations; drivers and passengers; hierarchical Bayesian model; pancreatic and breast cancer; CONSENSUS CODING SEQUENCES; FALSE DISCOVERY RATES; HUMAN BREAST; PATTERNS;
D O I
10.1214/12-AOAS604
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identifying genes underlying cancer development is critical to cancer biology and has important implications across prevention, diagnosis and treatment. Cancer sequencing studies aim at discovering genes with high frequencies of somatic mutations in specific types of cancer, as these genes are potential driving factors (drivers) for cancer development. We introduce a hierarchical Bayesian methodology to estimate gene-specific mutation rates and driver probabilities from somatic mutation data and to shed light on the overall proportion of drivers among sequenced genes. Our methodology applies to different experimental designs used in practice, including one-stage, two-stage and candidate gene designs. Also, sample sizes are typically small relative to the rarity of individual mutations. Via a shrinkage method borrowing strength from the whole genome in assessing individual genes, we reinforce inference and address the selection effects induced by multistage designs. Our simulation studies show that the posterior driver probabilities provide a nearly unbiased false discovery rate estimate. We apply our methods to pancreatic and breast cancer data, contrast our results to previous estimates and provide estimated proportions of drivers for these two types of cancer.
引用
收藏
页码:883 / 903
页数:21
相关论文
共 50 条
  • [1] An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data
    Shiraishi, Yuichi
    Sato, Yusuke
    Chiba, Kenichi
    Okuno, Yusuke
    Nagata, Yasunobu
    Yoshida, Kenichi
    Shiba, Norio
    Hayashi, Yasuhide
    Kume, Haruki
    Homma, Yukio
    Sanada, Masashi
    Ogawa, Seishi
    Miyano, Satoru
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07)
  • [2] Bayesian hierarchical analysis of minefield data
    Cressie, N
    Lawson, AB
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS III, PTS 1 AND 2, 1998, 3392 : 930 - 940
  • [3] Hierarchical Bayesian fatigue data analysis
    Liu, Xiao-Wei
    Lu, Da-Gang
    Hoogenboom, Pierre C. J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 : 418 - 428
  • [4] MUFFINN: cancer gene discovery via network analysis of somatic mutation data
    Cho, Ara
    Shim, Jung Eun
    Kim, Eiru
    Supek, Fran
    Lehner, Ben
    Lee, Insuk
    GENOME BIOLOGY, 2016, 17
  • [5] MUFFINN: cancer gene discovery via network analysis of somatic mutation data
    Ara Cho
    Jung Eun Shim
    Eiru Kim
    Fran Supek
    Ben Lehner
    Insuk Lee
    Genome Biology, 17
  • [6] Multivariate association analysis with somatic mutation data
    He, Qianchuan
    Liu, Yang
    Peters, Ulrike
    Hsu, Li
    BIOMETRICS, 2018, 74 (01) : 176 - 184
  • [7] Inference of cancer progression from somatic mutation data
    Wu, Hao
    Gao, Lin
    Kasabov, Nikola
    IFAC PAPERSONLINE, 2015, 48 (28): : 234 - 238
  • [8] Cancer subtype identification using somatic mutation data
    Kuijjer, Marieke Lydia
    Paulson, Joseph Nathaniel
    Salzman, Peter
    Ding, Wei
    Quackenbush, John
    BRITISH JOURNAL OF CANCER, 2018, 118 (11) : 1492 - 1501
  • [9] Cancer subtype identification using somatic mutation data
    Marieke Lydia Kuijjer
    Joseph Nathaniel Paulson
    Peter Salzman
    Wei Ding
    John Quackenbush
    British Journal of Cancer, 2018, 118 : 1492 - 1501
  • [10] Large hierarchical Bayesian analysis of multivariate survival data
    Gustafson, P
    BIOMETRICS, 1997, 53 (01) : 230 - 242