An adelic resolution for homology sheaves

被引:3
|
作者
Gorchinskii, S. O. [1 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1070/IM2008v072n06ABEH002433
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a, generalization of the ordinary idele group by constructing certain adelic complexes for sheaves of K-groups on schemes. Such complexes are defined for any abelian sheaf oil a scheme. We. focus oil the case when the sheaf is associated with the presheaf of a homology theory with certain natural axioms satisfied, in particular, by K-theory. In this case it is proved that the adelic complex provides a flabby resolution for this sheaf oil smooth varieties over an infinite perfect field and that the natural morphism to the Gersten complex is a quasi-isomorphism. The main advantage of the new adelic resolution is that it is contravariant and multiplicative. In particular, this enables us to reprove that the intersection in Chow groups coincides (up to a sign) with the natural product in the corresponding K-cohomology groups. Also, we show that the Weil pairing call be. expressed as a Massey triple product in K-cohomology groups with certain indices.
引用
收藏
页码:1187 / 1252
页数:66
相关论文
共 50 条
  • [1] Adelic resolution for sheaves of K-groups
    Gorchinskii, S. O.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (01) : 184 - 186
  • [2] EXCEPTIONAL SHEAVES, DENSE SHEAVES - HOMOLOGY AND RECOVERY
    LAMOUREUX, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (21): : 1041 - 1043
  • [3] ON THE HOMOLOGY THEORY OF ANALYTIC SHEAVES
    GOLOVIN, VD
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 16 (02): : 239 - 260
  • [4] A1-Homotopy Sheaves and A1-Homology Sheaves
    Morel, Fabien
    [J]. A1-ALGEBRAIC TOPOLOGY OVER A FIELD, 2012, 2052 : 149 - 175
  • [5] CO-HOMOLOGY OF SIMPLE SHEAVES
    DEO, S
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (3-4): : 217 - 226
  • [6] Weighted sheaves and homology of Artin groups
    Paolini, Giovanni
    Salvetti, Mario
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (07): : 3943 - 4000
  • [7] Flabby sheaves of chains for singular homology
    Sklyarenko, EG
    [J]. MATHEMATICAL NOTES, 1999, 65 (3-4) : 331 - 334
  • [8] Perverse sheaves and knot contact homology
    Berest, Yuri
    Eshmatov, Alimjon
    Yeung, Wai-Kit
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (04) : 378 - 399
  • [9] HOMOLOGY OF SHEAVES VIA BROWN REPRESENTABILITY
    De Salas, Fernando Sancho
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (01) : 123 - 151
  • [10] Flabby sheaves of chains for singular homology
    E. G. Sklyarenko
    [J]. Mathematical Notes, 1999, 65 : 331 - 334