Multi-objective Hybrid DE Algorithm for Solving VRPTW

被引:0
|
作者
Song, Xiao-yu [1 ]
Zheng, Kai-wen [1 ]
Wu, Yan [1 ]
机构
[1] Shenyang Jianzhu Univ, Control Engn Fac, Shenyang 110168, Liaoning, Peoples R China
关键词
Vehicle routing problem with time windows; Strategy hybrid algorithm; Merge sort; nondominated set; Differential evolution algorithm;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For the characteristics of the Vehicle Routing Problem with Time Windows(VRPTW) a multi-objective hybrid Differential Evolution algorithm for VRPTW is proposed. Firstly, through a linearly varying parameter controls the probability of choice of DE/rand/1 mutation strategy and DE/best/1 mutation strategy. Secondly, a crossover operation based on merge sort is designed. Finally, selection operations employ Pareto-dominated concepts and ring rules to rank individuals and output non-dominated solutions. The experimental results compared with single strategy DE algorithm and ABC algorithms show that the proposed algorithm is effective in solving the VRPTW.
引用
收藏
页码:447 / 452
页数:6
相关论文
共 50 条
  • [1] A multi-objective hybrid BCRC-NSGAII algorithm to solve the VRPTW
    Mnasri, Sami
    Abbes, Fatma
    Zidi, Kamel
    Ghedira, Khaled
    [J]. 2013 13TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2013, : 60 - 65
  • [2] A tissue P system based evolutionary algorithm for multi-objective VRPTW
    Dong, Wenbo
    Zhou, Kang
    Qi, Huaqing
    He, Cheng
    Zhang, Jun
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 310 - 322
  • [3] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [4] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Iraq Tariq
    H. A. AlSattar
    A. A. Zaidan
    B. B. Zaidan
    M. R. Abu Bakar
    R. T. Mohammed
    O. S. Albahri
    M. A. Alsalem
    A. S. Albahri
    [J]. Neural Computing and Applications, 2020, 32 : 3101 - 3115
  • [5] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Tariq, Iraq
    AlSattar, H. A.
    Zaidan, A. A.
    Zaidan, B. B.
    Abu Bakar, M. R.
    Mohammed, R. T.
    Albahri, O. S.
    Alsalem, M. A.
    Albahri, A. S.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3101 - 3115
  • [6] Multi-objective Jaya Algorithm for Solving Constrained Multi-objective Optimization Problems
    Naidu, Y. Ramu
    Ojha, A. K.
    Devi, V. Susheela
    [J]. ADVANCES IN HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS, 2020, 1063 : 89 - 98
  • [7] Multi-objective Phylogenetic Algorithm: Solving Multi-objective Decomposable Deceptive Problems
    Martins, Jean Paulo
    Mineiro Soares, Antonio Helson
    Vargas, Danilo Vasconcellos
    Botazzo Delbem, Alexandre Claudio
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 285 - 297
  • [8] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [9] Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
    Azizmohammadi, R.
    Amiri, M.
    Tavakkoli-Moghaddam, R.
    Mohammadi, M.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (09): : 1031 - 1042
  • [10] Multi-objective sparrow search algorithm: A novel algorithm for solving complex multi-objective optimisation problems
    Li, Bin
    Wang, Honglei
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210