Roughly Impedance-Matched Scatterers Constructed With Magnetodielectric Cells

被引:3
|
作者
Vacus, Olivier [1 ]
Ziolkowski, Richard W. [2 ]
机构
[1] CEA CESTA, F-33116 Le Barp, France
[2] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
关键词
Electromagnetic modeling; electromagnetic scattering; homogenization; integral equations; radar cross sections (RCSs); Weston's theorem; DESIGN; OPTIMIZATION;
D O I
10.1109/TAP.2015.2463683
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The monostatic theorem of Weston states that a null radar cross section (RCS) will be observed for objects with rotational symmetry that are impedance matched to their host medium, i.e., that have their material parameters epsilon(r) = mu(r). A study of the generalization of this result applied to heterogeneous magnetodielectric (MD) scatterers is presented. The entire object of interest is divided into a set of small cubical unit cells in a three-dimensional checkerboard format, i.e., two different materials are distributed alternately in lego-like designs. Numerical computations are presented to compare the RCS levels of perfectly impedance-matched scatterers and their lego-based equivalents. The degree of homogenization that can be attributed to these heterogeneous scatterers for a variety of double positive material choices, including extreme values, is addressed specifically in relation to their satisfaction of Weston's theorem.
引用
收藏
页码:4418 / 4425
页数:8
相关论文
共 50 条
  • [1] RCS study of impedance-matched scatterers constructed with magnetodielectric cubes
    Vacus, O.
    Ziolkowski, Richard W.
    2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 418 - 420
  • [2] Impedance-matched hyperlens
    Kildishev, Alexander V.
    Narimanov, Evgenii E.
    OPTICS LETTERS, 2007, 32 (23) : 3432 - 3434
  • [3] Impedance-matched Marx generators
    Stygar, W. A.
    LeChien, K. R.
    Mazarakis, M. G.
    Savage, M. E.
    Stoltzfus, B. S.
    Austin, K. N.
    Breden, E. W.
    Cuneo, M. E.
    Hutsel, B. T.
    Lewis, S. A.
    McKee, G. R.
    Moore, J. K.
    Mulville, T. D.
    Muron, D. J.
    Reisman, D. B.
    Sceiford, M. E.
    Wisher, M. L.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (04):
  • [4] Impedance-matched microwave lens
    Alitalo, Pekka
    Luukkonen, Olli
    Vehmas, Joni
    Tretyakov, Sergei A.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 (187-191): : 187 - 191
  • [5] Impedance-matched cavity quantum memory
    Afzelius, Mikael
    Simon, Christoph
    PHYSICAL REVIEW A, 2010, 82 (02)
  • [6] JOSEPHSON DEVICES WITH IMPEDANCE-MATCHED RF SOURCES
    LONGACRE, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 265 - 265
  • [7] Impedance-Matched Differential Superconducting Nanowire Detectors
    Colangelo, Marco
    Korzh, Boris
    Allmaras, Jason P.
    Beyer, Andrew D.
    Mueller, Andrew S.
    Zhu, Di
    Smith, Stephen
    Becker, Wolfgang
    Narvaez, Lautaro
    Bienfang, Joshua C.
    Frasca, Simone
    Velasco, Angel E.
    Walter, Alexander B.
    Schmidt, Ekkehart
    Wollman, Emma E.
    Mirin, Richard
    Woo, Sae
    Berggern, Karl K.
    Shaw, Matthew D.
    PHYSICAL REVIEW APPLIED, 2023, 19 (04):
  • [8] Vacuum Impedance-Matched Materials Based on Ferrospinels
    Serebryannikov S.V.
    Serebryannikov S.S.
    Dolgov A.V.
    Yeremtsova L.L.
    Slavinskiy A.Z.
    Bulletin of the Russian Academy of Sciences: Physics, 2022, 86 (09) : 1047 - 1049
  • [9] Impedance-Matched Ceramic Materials Based on Ferrospinels
    Serebryannikov, S.V.
    Dolgov, A.V.
    Serebryannikov, S.S.
    Kovalchuk, V.G.
    Belevtsev, A.M.
    Epaneshnikova, I.K.
    Kryuchkov, V.L.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (11) : 1763 - 1767
  • [10] Scattering Cross Sections of Impedance-Matched Bodies
    Osipov, Andrey V.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) : 3122 - 3126