Lack of Separation Principle for Quantized Linear Quadratic Gaussian Control

被引:25
|
作者
Fu, Minyue [1 ]
机构
[1] Zhejiang Univ, Sch Control Sci & Engn, Hangzhou, Zhejiang, Peoples R China
关键词
Certainty equivalence; linear quadratic Gaussian control; networked control; quantized estimation; quantized feedback control; separation principle; COMMUNICATION BANDWIDTH CONSTRAINTS; LQG OPTIMAL-CONTROL; FEEDBACK-CONTROL; OPTIMUM QUANTIZATION; LIMITED INFORMATION; DYNAMIC-SYSTEMS; STABILIZATION; CHANNELS;
D O I
10.1109/TAC.2012.2187010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note studies the quantized linear quadratic Gaussian (LQG) control problem which is generalized from the classical LQG control but with the constraint that the feedback signal is quantized with a fixed bit rate. We show that state feedback control, state estimation and quantization can not be fully separated in general. Only a weak separation principle holds which converts the quantized LQG control problem into a quantized state estimation problem. Further separation of estimation and quantization is not possible in general. A concrete example is provided to demonstrate this fact. It is also shown that the so-called "whitening" approach to quantized state estimation is not optimal.
引用
收藏
页码:2385 / 2390
页数:6
相关论文
共 50 条
  • [1] Linear Quadratic Gaussian Control with Quantized Feedback
    Fu, Minyue
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2172 - 2177
  • [2] Quantized feedback control of linear quadratic Gaussian systems under communication constraints
    Jin, Fang
    Liu, Qing-Quan
    Tao, Gui-Hong
    ICIC Express Letters, Part B: Applications, 2012, 6 (08): : 2125 - 2131
  • [3] Quantized feedback control of linear quadratic Gaussian systems under communication constraints
    Jin, Fang
    Liu, Qing-Quan
    Tao, Gui-Hong
    ICIC Express Letters, 2012, 6 (08): : 2125 - 2131
  • [4] Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation
    Kleptsyna, Marina
    Breton, Alain Le
    Michel, Viot
    ESAIM - Probability and Statistics, 2008, 12 : 94 - 126
  • [5] Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems
    Costa, OLV
    Tuesta, EF
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) : 1836 - 1842
  • [6] DISCOUNTED LINEAR EXPONENTIAL QUADRATIC GAUSSIAN CONTROL
    HANSEN, LP
    SARGENT, TJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (05) : 968 - 971
  • [7] A MULTIOBJECTIVE LINEAR QUADRATIC GAUSSIAN CONTROL PROBLEM
    TOIVONEN, HT
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (03) : 279 - 280
  • [8] Linear-Exponential-Quadratic Gaussian Control
    Duncan, Tyrone E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (11) : 2910 - 2911
  • [9] NON-LINEAR QUADRATIC GAUSSIAN CONTROL
    BEAMAN, JJ
    INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (02) : 343 - 361
  • [10] LINEAR-QUADRATIC FRACTIONAL GAUSSIAN CONTROL
    Duncan, Tyrone E.
    Pasik-Duncan, Bozenna
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (06) : 4504 - 4519