NONLINEAR DIRAC EQUATION ON GRAPHS WITH LOCALIZED NONLINEARITIES: BOUND STATES AND NONRELATIVISTIC LIMIT

被引:24
|
作者
Borrelli, William [1 ]
Carlone, Raffaele [2 ]
Tentarelli, Lorenzo [2 ]
机构
[1] Univ Paris 09, PSL Res Univ, CNRS, UMR 7534, F-75016 Paris, France
[2] Univ Federico II Napoli, Dipartimento Matemat & Applicaz R Caccioppoli, MSA, Via Cinthia, I-80126 Naples, Italy
关键词
nonlinear Dirac equations; metric graphs; nonrelativistic limit; variational methods; bound states; linking; GROUND-STATES; NLS EQUATION; SCHRODINGER-EQUATION; STATIONARY SOLUTIONS; STANDING WAVES; QUANTUM GRAPHS; METRIC GRAPHS; STABILITY; COMPACT; OPERATOR;
D O I
10.1137/18M1211714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear Dirac (NLD) equation on noncompact metric graphs with localized Kerr nonlinearities, in the case of Kirchhoff-type conditions at the vertices. Precisely, we discuss existence and multiplicity of the bound states (arising as critical points of the NLD action functional) and we prove that, in the L-2-subcritical case, they converge to the bound states of the nonlinear Schrodinger equation in the nonrelativistic limit.
引用
收藏
页码:1046 / 1081
页数:36
相关论文
共 50 条
  • [1] Bound states of the NLS equation on metric graphs with localized nonlinearities
    Serra, Enrico
    Tentarelli, Lorenzo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5627 - 5644
  • [2] THE NONRELATIVISTIC LIMIT OF THE NONLINEAR DIRAC-EQUATION
    NAJMAN, B
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01): : 3 - 12
  • [3] Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation
    Machihara, S
    Nakanishi, K
    Ozawa, T
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (01) : 179 - 194
  • [4] NONRELATIVISTIC LIMIT OF DIRAC EQUATION IN CONTINUUM
    RONVEAUX, A
    LETTERE AL NUOVO CIMENTO, 1970, 4 (15): : 703 - &
  • [5] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    BAO WeiZhu
    CAI YongYong
    JIA XiaoWei
    YIN Jia
    Science China(Mathematics), 2016, 59 (08) : 1461 - 1494
  • [6] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    Bao WeiZhu
    Cai YongYong
    Jia XiaoWei
    Yin Jia
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1461 - 1494
  • [7] On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation
    Tobias Jahnke
    Michael Kirn
    BIT Numerical Mathematics, 2023, 63
  • [8] On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation
    Jahnke, Tobias
    Kirn, Michael
    BIT NUMERICAL MATHEMATICS, 2023, 63 (02)
  • [9] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    WeiZhu Bao
    YongYong Cai
    XiaoWei Jia
    Jia Yin
    Science China Mathematics, 2016, 59 : 1461 - 1494
  • [10] UNIFORMLY ACCURATE NUMERICAL SCHEMES FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Lemou, Mohammed
    Mehats, Florian
    Zhao, Xiaofei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 1107 - 1128