The class of infinite dimensional neat reducts of quasi-polyadic algebras is not axiomatizable

被引:8
|
作者
Ahmed, TS [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
关键词
algebraic logic; quasi-polyadic algebra; neat reduct; elementary class;
D O I
10.1002/malq.200510020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
SC, CA, QA and QEA denote the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasi-polyadic algebras and quasi-polyadic equality algebras, respectively. Let omega <= alpha < beta and let K is an element of {SC, CA, QA, QEA}. We show that the class of alpha-dimensional neat reducts of algebras in K-beta is not elementary. This solves a problem in [3]. Also our result generalizes results proved in [2] and [3]. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 24 条