CONVERGENCE RATE OF THE CQ ALGORITHM FOR SPLIT FEASIBILITY PROBLEMS

被引:0
|
作者
Chen, Peipei [1 ]
He, Hongjin [1 ]
Liou, Yeong-Cheng [2 ,3 ,4 ]
Wen, Ching-Feng [5 ,6 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Ctr Big Data Analyt & Intelligent Healthcare, Kaohsiung 807, Taiwan
[3] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 807, Taiwan
[4] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 807, Taiwan
[5] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80708, Taiwan
[6] Kaohsiung Med Univ, Res Ctr Nonlinear Anal & Optimizat, Kaohsiung 80708, Taiwan
基金
中国国家自然科学基金;
关键词
Acceleration; Split feasibility problem; CQ algorithm; Iteration complexity; Image deblurring; LINEAR INVERSE PROBLEMS; LEAST-SQUARES; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The CQ algorithm is one of the most popular solvers for split feasibility problems. In this paper, we first prove that the CQ algorithm is globally convergent with an iteration-complexity O(1/k), where k represents the number of iterations. More interestingly, we employ an acceleration scheme to the CQ algorithm such that the resulting approach converges fast with an iteration complexity O(1/k(2)). Finally, we apply the algorithms to synthetic data and image deblurring problems and report some promising numerical results to confirm our theoretical results.
引用
收藏
页码:381 / 395
页数:15
相关论文
共 50 条
  • [1] EXTENSIONS OF THE CQ ALGORITHM FOR THE SPLIT FEASIBILITY AND SPLIT EQUALITY PROBLEMS
    Byrne, Charles L.
    Moudafi, Abdellatif
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (08) : 1485 - 1496
  • [2] Strong convergence of a relaxed CQ algorithm for the split feasibility problem
    He, Songnian
    Zhao, Ziyi
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [3] On Inertial Relaxation CQ Algorithm for Split Feasibility Problems
    Kesornprom, Suparat
    Cholamjiak, Prasit
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (02): : 245 - 255
  • [4] Strong convergence of a relaxed CQ algorithm for the split feasibility problem
    Songnian He
    Ziyi Zhao
    [J]. Journal of Inequalities and Applications, 2013 (1)
  • [5] Approximating Curve and Strong Convergence of the CQ Algorithm for the Split Feasibility Problem
    Wang, Fenghui
    Xu, Hong-Kun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [6] Approximating Curve and Strong Convergence of the CQ Algorithm for the Split Feasibility Problem
    Fenghui Wang
    Hong-Kun Xu
    [J]. Journal of Inequalities and Applications, 2010
  • [7] The strong convergence of a KM-CQ-like algorithm for a split feasibility problem
    Dang, Yazheng
    Gao, Yan
    [J]. INVERSE PROBLEMS, 2011, 27 (01)
  • [8] A New CQ Algorithm for Solving Split Feasibility Problems in Hilbert Spaces
    Nguyen The Vinh
    Cholamjiak, Prasit
    Suantai, Suthep
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2517 - 2534
  • [9] THE MODIFIED INERTIAL RELAXED CQ ALGORITHM FOR SOLVING THE SPLIT FEASIBILITY PROBLEMS
    Suantai, Suthep
    Pholasa, Nattawut
    Cholamjiak, Prasit
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2018, 14 (04) : 1595 - 1615
  • [10] A New CQ Algorithm for Solving Split Feasibility Problems in Hilbert Spaces
    Nguyen The Vinh
    Prasit Cholamjiak
    Suthep Suantai
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2517 - 2534