NATURAL BOUNDARIES OF A FAMILY OF DIRICHLET SERIES

被引:1
|
作者
Zaharescu, Alexandru [1 ,2 ]
Zaki, Mohammad [3 ]
机构
[1] Acad Romana, Inst Math, Bucharest 014700, Romania
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Ohio No Univ, Dept Math, Ada, OH 45810 USA
关键词
Zeta and L-functions; Dirichlet series; analytic continuation; EULER PRODUCTS;
D O I
10.1216/RMJ-2013-43-2-661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the natural boundary of the Dirichlet series F-q,F-b,F-H,F-alpha (s) - Sigma(m,k >= 1 mk b (mod q)) II(alpha log(m + k))Lambda(m)Lambda(k)/(m + k)(s), where. is the classical Von Mangoldt function, H is a smooth periodic function with period 1, alpha > 0 is a real number and b, q > 0 are integers with (b, q) = 1.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 50 条