Model-robust R-optimal designs in linear regression models

被引:3
|
作者
Liu, Xin [1 ]
Yue, Rong-Xian [2 ,3 ]
Chatterjee, Kashinath [4 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201600, Peoples R China
[2] Shanghai Normal Univ, Coll Math & Sci, Shanghai 200234, Peoples R China
[3] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[4] Visva Bharati Univ, Dept Stat, Santini Ketan, W Bengal, India
关键词
R-optimality; Robust designs; Elfving's theorem; General equivalence theorem; TRIGONOMETRIC REGRESSION; ELFVINGS THEOREM;
D O I
10.1016/j.jspi.2015.05.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers an extension of R-optimality to model-robust optimal design, where a prior probability is set on a class of candidate linear models. A generalization of Elfving's theorem is proved, which gives a geometrical characterization of model-robust R-optimal designs. An equivalence theorem is presented and used to check optimality of designs in a few illustrative examples. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [1] R-optimal designs for trigonometric regression models
    He, Lei
    Yue, Rong-Xian
    [J]. STATISTICAL PAPERS, 2020, 61 (05) : 1997 - 2013
  • [2] R-optimal designs for trigonometric regression models
    Lei He
    Rong-Xian Yue
    [J]. Statistical Papers, 2020, 61 : 1997 - 2013
  • [3] R-optimal Designs for Linear Haar-Wavelet Regression Models
    Chatterjee, Kashinath
    [J]. STATISTICS AND APPLICATIONS, 2021, 19 (01): : 61 - 65
  • [4] R-optimal designs in random coefficient regression models
    Liu, Xin
    Yue, Rong-Xian
    Chatterjee, Kashinath
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 88 : 127 - 132
  • [5] R-optimal designs for individual prediction in random coefficient regression models
    He, Lei
    He, Daojiang
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 159
  • [6] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245
  • [7] Locally R-optimal designs for a class of nonlinear multiple regression models
    He, Lei
    Yue, Rong-Xian
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2023, 7 (02) : 107 - 120
  • [8] R-OPTIMAL DESIGNS IN PROBLEMS OF OPTIMIZATION BASED ON REGRESSION MODELS.
    Voshchinin, A.P.
    Kirillichev, A.A.
    Nguyen An Chin
    [J]. 1600, (49):
  • [9] R-OPTIMAL DESIGNS IN PROBLEMS OF OPTIMIZATION BASED ON REGRESSION-MODELS
    VOSHCHININ, AP
    KIRILLICHEV, AA
    CHIN, NA
    [J]. INDUSTRIAL LABORATORY, 1983, 49 (10): : 1062 - 1069
  • [10] Model-robust designs for nonlinear quantile regression
    Selvaratnam, Selvakkadunko
    Kong, Linglong
    Wiens, Douglas P.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 221 - 232