Living in a void: Testing the Copernican principle with distant supernovae

被引:110
|
作者
Clifton, Timothy [1 ]
Ferreira, Pedro G. [1 ]
Land, Kate [1 ]
机构
[1] DWB, Dept Phys, Oxford OX1 3RH, England
关键词
D O I
10.1103/PhysRevLett.101.131302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the local redshift dependence of the luminosity distance can be used to test the Copernican principle that we are not in a central or otherwise special region of the Universe. Future surveys of type Ia supernovae that focus on a redshift range of similar to 0.1-0.4 will be ideally suited to observationally determine the validity of the Copernican principle on new scales, as well as probing the degree to which dark energy must be considered a necessary ingredient in the Universe.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Testing the Copernican principle with the Hubble parameter
    Zhang, Zhi-Song
    Zhang, Tong-Jie
    Wang, Hao
    Ma, Cong
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [2] Testing the Copernican Principle with the kSZ Effect
    Yoo, Chul-Moon
    Kai, Tomohiro
    Nakao, Ken-ichi
    Sasaki, Misao
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (03) : 610 - 614
  • [3] Testing the Copernican principle by constraining spatial homogeneity
    Valkenburg, Wessel
    Marra, Valerio
    Clarkson, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 438 (01) : L6 - L10
  • [4] Testing the copernican principle via cosmological observations
    Bolejko, Krzysztof
    Wyithe, J. Stuart B.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (02):
  • [5] Towards testing interacting cosmology by distant supernovae
    Szydlowski, M
    Stachowiak, T
    Wojtak, R
    PHYSICAL REVIEW D, 2006, 73 (06):
  • [6] Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle
    February, Sean
    Clarkson, Chris
    Maartens, Roy
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (03):
  • [7] Euclid: Testing the Copernican principle with next-generation surveys
    Camarena, D.
    Marra, V.
    Sakr, Z.
    Nesseris, S.
    Da Silva., A.
    Garcia-Bellido., J.
    Fleury., P.
    Lombriser, L.
    Martinelli, M.
    Martins, C. J. A. P.
    Mimoso, J.
    Sapone, D.
    Clarkson, C.
    Camera, S.
    Carbone, C.
    Casas, S.
    Ilic, S.
    Pettorino, V.
    Tutusaus, I.
    Aghanim, N.
    Altieri, B.
    Amara, A.
    Auricchio, N.
    Baldi, M.
    Bonino, D.
    Branchini, E.
    Brescia, M.
    Brinchmann, J.
    Candini, G. P.
    Capobianco, V.
    Carretero, J.
    Castellano, M.
    Cavuoti, S.
    Cimatti, A.
    Cledassou, R.
    Congedo, G.
    Conversi, L.
    Copin, Y.
    Corcione, L.
    Courbin, F.
    Cropper, M.
    Degaudenzi, H.
    Dubath, F.
    Duncan, C. A. J.
    Dupac, X.
    Dusini, S.
    Ealet, A.
    Farrens, S.
    Fosalba, P.
    Frailis, M.
    ASTRONOMY & ASTROPHYSICS, 2023, 671
  • [8] A test of the Copernican principle
    Caldwell, R. R.
    Stebbins, A.
    PHYSICAL REVIEW LETTERS, 2008, 100 (19)
  • [9] An update on the Copernican principle
    Armstrong, J. W.
    NATURE, 2021,
  • [10] A general test of the Copernican principle
    Clarkson, Chris
    Bassett, Bruce
    Lu, Teresa Hui-Ching
    PHYSICAL REVIEW LETTERS, 2008, 101 (01)