Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries

被引:89
|
作者
Sim, Seong-Ju [1 ]
Lee, Seung-Hwan [2 ]
Jin, Bong-Soo [1 ]
Kim, Hyun-Soo [1 ]
机构
[1] Korea Electrotechnol Res Inst KERI, Next Generat Battery Res Ctr, Chang Won, South Korea
[2] Daejeon Univ, Dept Adv Mat Engn, Daejeon 34520, South Korea
关键词
NI-RICH; ELECTROCHEMICAL PERFORMANCES; LINI0.5CO0.2MN0.3O2; CATHODE; CYCLING PERFORMANCE; ELECTRODE MATERIALS; THERMAL-STABILITY; HIGH-ENERGY; SOL-GEL; LINI1/3CO1/3MN1/3O2; VOLTAGE;
D O I
10.1038/s41598-020-67818-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ni-rich cathode is one of the promising candidate for high-energy lithium-ion batteries. In this work, we prepare the different super-P carbon black amounts [0.1 (SPB 0.1 wt%), 0.3 (SPB 0.3 wt%), 0.5 (SPB 0.5 wt%) and 0.7 wt% (SPB 0.7 wt%)] of carbon coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes and their electrochemical performances are investigated. Carbon coating does not change the crystal structure and morphology of NCM811. Among the coated NCM811, the SPB 0.5 wt% NCM811 delivers the excellent cyclability (87.8% after 80 cycles) and rate capability (86.5% at 2 C) compared to those of pristine NCM811. It is ascribed to that the carbon coating not only increase the Li ion and electron transfer as well as protect the NCM811 cathode materials from side reaction at the electrolyte/NCM811 interface. Therefore, we can conclude that the appropriate amount of carbon coating can be regarded as an effective approach for Ni-rich NCM cathode.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries
    Seong-Ju Sim
    Seung-Hwan Lee
    Bong-Soo Jin
    Hyun-Soo Kim
    Scientific Reports, 10
  • [2] Silver Nanocoating of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Li, Xintong
    Chang, Kai
    Abbas, Somia M.
    El-Tawil, Rasha S.
    Abdel-Ghany, Ashraf E.
    Hashem, Ahmed M.
    Wang, Hua
    Coughlin, Amanda L.
    Zhang, Shixiong
    Mauger, Alain
    Zhu, Likun
    Julien, Christian M.
    MICROMACHINES, 2023, 14 (05)
  • [3] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Jae-won Lee
    Korean Journal of Chemical Engineering, 2016, 33 : 514 - 526
  • [4] Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries
    Duc-Luong Vu
    Lee, Jae-won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2016, 33 (02) : 514 - 526
  • [5] Mechanism of Capacity Fading in the LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries
    Ahn, Yong-keon
    Jo, Yong Nam
    Cho, Woosuk
    Yu, Ji-Sang
    Kim, Ki Jae
    ENERGIES, 2019, 12 (09)
  • [6] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Zhu, Xiao-Feng
    Li, Xiu
    Liang, Tian-Quan
    Liu, Xin-Hua
    Ma, Jian-Min
    RARE METALS, 2023, 42 (02) : 387 - 398
  • [7] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 (02) : 387 - 398
  • [8] Improved electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 material with lithium-ion conductor coating for lithium-ion batteries
    Wang, Meng
    Zhang, Ran
    Gong, Yongqiang
    Su, Yuefeng
    Xiang, Debo
    Chen, Lin
    Chen, Yunbo
    Luo, Min
    Chu, Mo
    SOLID STATE IONICS, 2017, 312 : 53 - 60
  • [9] Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries
    Xiao-Feng Zhu
    Xiu Li
    Tian-Quan Liang
    Xin-Hua Liu
    Jian-Min Ma
    Rare Metals, 2023, 42 : 387 - 398
  • [10] Well-ordered spherical LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries
    Gai Yang
    Xianzhong Qin
    Bo Wang
    Feipeng Cai
    Jian Gao
    Journal of Materials Research, 2020, 35 : 51 - 57