Analysis of thermal performance and pressure loss of subcooled flow boiling in manifold microchannel heat sink

被引:16
|
作者
Luo, Yang [1 ]
Li, Wei [1 ]
Zhang, Jingzhi [2 ]
Minkowycz, W. J. [3 ]
机构
[1] Zhejiang Univ, Dept Energy Engn, Room 421 Di Wen Bldg,38 Zheda Rd,Yuquan Campus, Hangzhou 310027, Peoples R China
[2] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
[3] Univ Illinois, Dept Mech & Ind Engn, MC 251,842 West Taylor St, Chicago, IL USA
基金
美国国家科学基金会;
关键词
Manifold microchannel heat sink; S-CLSVOF method; Subcooled flow boiling; Numerical simulation; LEVEL SET; SURFACE-TENSION; BUBBLE-GROWTH; MINI-CHANNEL; CONDENSATION; DENSITY; DESIGN; VOLUME; FLUID; ARRAY;
D O I
10.1016/j.ijheatmasstransfer.2020.120362
中图分类号
O414.1 [热力学];
学科分类号
摘要
The manifold microchannel (MMC) heat sink for high-heat-flux removal in next-generation microelectronic system has received a significant attention recently. A numerical study is performed to analyze thermal performance and pressure loss of subcooled flow boiling in an MMC unit cell model. On the basis of OpenFOAM package, a new solver is developed for solving subcooled flow boiling and solid-fluid heat transfer. The simple coupled volume of fluid with level set (S-CLSVOF) method is used to capture the liquid-vapor interface during phase change. After validating the numerical approach with experimental data, effects of microchannel width w(c) and fin width w(f) on average chip wall temperature and inletto-outlet pressure drop are discussed. Seven MMC samples with different size of channel widths and fin widths are studied at inlet volume flow rates of 19, 31 and 42 mL/min as wall heat flux is fixed at 400 W/cm(2). The results indicate that decreasing w(c) and w(f) will lead to low average wall temperature on the heated wall, but pressure drop between inlet and outlet surfaces will rise dramatically. When the total number of channels of the MMC heat sink remains unchanged, increasing w(c) leads to decreasing w(f); the thermal resistance of the MMC heat sink is gradually increased while the pressure drop is reduced (e.g. +0.16 degrees C/W, -656 kPa at 42 mL/min). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Simulation of subcooled flow boiling in manifold microchannel heat sink
    Luo, Yang
    Li, Wei
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2020, 77 (11) : 951 - 965
  • [2] SIMULATION OF SUBCOOLED FLOW BOILING IN MANIFOLD MICROCHANNEL HEAT SINK
    Luo, Yang
    Zhang, Jingzhi
    Li, Wei
    PROCEEDINGS OF THE ASME 2020 18TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS (ICNMM2020), 2020,
  • [3] Numerical simulation of subcooled flow boiling in a manifold microchannel heat sink
    Li, Wei
    Luo, Yang
    Zhang, Jingzhi
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (17): : 1752 - 1759
  • [4] Thermal management of GaN HEMT devices using subcooled flow boiling in an embedded manifold microchannel heat sink
    Tang, Weiyu
    Li, Junye
    Lu, Junliang
    Sheng, Kuang
    Wu, Zan
    Li, Xinbao
    APPLIED THERMAL ENGINEERING, 2023, 225
  • [5] Numerical investigation of the effect of microchannel configurations on subcooled flow boiling heat transfer performance of manifold heat sinks
    Ma, Zihuan
    Hu, Chengyu
    Hou, Junsheng
    Ma, Li
    Hao, Nanjing
    Wei, Jinjia
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 235
  • [6] A numerical study of subcooled flow boiling in a manifold microchannel heat sink with varying inlet-to-outlet width ratio
    Luo, Yang
    Li, Junye
    Zhou, Kan
    Zhang, Jingzhi
    Li, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 139 : 554 - 563
  • [7] NUMERICAL INVESTIGATION OF FLOW BOILING IN A MANIFOLD MICROCHANNEL HEAT SINK WITH CONJUGATE HEAT TRANSFER
    Sun, Zhichuan
    Luo, Yang
    Li, Junye
    Li, Wei
    Zhang, Jingzhi
    Zhang, Zhengjiang
    Wu, Jie
    PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2019, 2019,
  • [8] Flow boiling in a microchannel heat sink
    Liu, Dong
    Garimella, Suresh V.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 1, 2005, 376-1 : 633 - 642
  • [9] Effects of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink
    Chen, Tailian
    Garimella, Suresh V.
    ICMM 2005: 3RD INTERNATIONAL CONFERENCE ON MICROCHANNELS AND MINICHANNELS, PT B, 2005, : 89 - 96
  • [10] Effects of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink
    Chen, Tailian
    Garimella, Suresh V.
    JOURNAL OF ELECTRONIC PACKAGING, 2006, 128 (04) : 398 - 404