Edge detection based on curvature of gravity gradient tensors

被引:7
|
作者
Tang JingTian [1 ,2 ]
Shi QingBin [3 ]
Hu ShuangGui [1 ,2 ]
Ren ZhengYong [1 ,2 ]
Xiao Xiao [1 ,2 ]
Qu Yi [1 ,2 ]
Yang Lei [1 ,2 ]
Hou ZhenLong [4 ]
Pang Cheng [5 ]
机构
[1] Cent S Univ, Sch Geosci & Infophys, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Key Lab Metallogen Predict Nonferrous Met, Minist Educ, Changsha 410083, Hunan, Peoples R China
[3] China Railway Engn Consulting Grp Co Ltd, Beijing 100055, Peoples R China
[4] Northeastern Univ, Sch Resources & Civil Engn, Shenyang 110819, Liaoning, Peoples R China
[5] East China 814 Geophys Prospecting Co Ltd, Nanjing 210014, Jiangsu, Peoples R China
来源
关键词
Gravity gradient tensor; Curvature; Equipotential surface; Local rotational coordinate system; Edge detection; FIELD; LOCALIZATION; UNDERWATER;
D O I
10.6038/cjg2019M0427
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, the curvature of gravity gradient tensors is widely used in processing and interpretation of gravity data. In order to extend the application of this parameter, the local reference system based on the related theory of local rotation is discussed for the correct calculation of curvature using gravity vectors and gradient tensors. And a single sphere and prism as an example is taken to illustrate the correctness of this theory. Then, the correctly calculated curvature of gravity gradient tensors is applied to the edge detection of gravity data. Finally, using the synthetic models and real data, the application effect of various curvatures in edge detection was analyzed and discussed. The results show that the local rotation coordinate system based on the equipotential surface is a prerequisite for correct calculation of various curvatures, which corrects the misunderstanding in the calculation of the curvature. In the edge detection, the Gauss curvature calculated in the local coordinate system can better delineate the edge of the underground geological body.
引用
下载
收藏
页码:1872 / 1884
页数:13
相关论文
共 26 条
  • [1] Benson S, 2011, FUNDAMENTALS MAT ENE, P90
  • [2] Blakely R.J., 1995, POTENTIAL THEORY GRA, DOI DOI 10.1017/CBO9780511549816
  • [3] Interpreting the direction of the gravity gradient tensor eigenvectors: Their relation to curvature parameters of the gravity field
    Cevallos, Carlos
    [J]. GEOPHYSICS, 2016, 81 (03) : G49 - G57
  • [4] Automatic generation of 3D geophysical models using curvatures derived from airborne gravity gradient data
    Cevallos, Carlos
    [J]. GEOPHYSICS, 2014, 79 (05) : G49 - G58
  • [5] Application of curvatures to airborne gravity gradient data in oil exploration
    Cevallos, Carlos
    Kovac, Peter
    Lowe, Sharon J.
    [J]. GEOPHYSICS, 2013, 78 (04) : G81 - G88
  • [6] Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders
    Chen, Chaojian
    Ren, Zhengyong
    Pan, Kejia
    Tang, Jingtian
    Kalscheuer, Thomas
    Maurer, Hansruedi
    Sun, Ya
    Li, Yang
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 214 (03) : 2115 - 2132
  • [7] Chowdhury P R, 2013, The Leading Edge, V32612, P1468
  • [8] The edge detection method and its application in the south China sea based on the gravity gradient structure tensor eigenvalue
    Dai WeiMing
    Huang DaNian
    Li TongLin
    Zhang GongCheng
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 61 (06): : 2494 - 2507
  • [9] Curvature analysis to differentiate magnetic sources for geologic mapping
    Lee, Madeline
    Morris, William
    Leblanc, George
    Harris, Jeff
    [J]. GEOPHYSICAL PROSPECTING, 2013, 61 : 572 - 585
  • [10] AUDIO MAGNETOTELLURIC SIGNAL-NOISE IDENTIFICATION AND SEPARATION BASED ON MULTIFRACTAL SPECTRUM AND MATCHING PURSUIT
    Li, Jin
    Zhang, Xian
    Tang, Jingtian
    Cai, Jin
    Liu, Xiaoqiong
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (01)