Hamilton-Jacobi quantization of constrained systems

被引:0
|
作者
Baleanu, D [1 ]
Güler, Y
机构
[1] Univ Cankaya, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
D O I
10.1023/A:1013349415257
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The path integral quantization of contrained systems is analysed using Hamilton-Jacobi formalism. The integrability conditions are investigated and the results are in agreement with those obtained by Dirac's method.
引用
收藏
页码:1260 / 1265
页数:6
相关论文
共 50 条
  • [1] CONSTRAINED SYSTEMS, GENERALIZED HAMILTON-JACOBI ACTIONS, AND QUANTIZATION
    Cattaneo, Alberto S.
    Mnev, Pavel
    Wernli, Konstantin
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (02): : 179 - 272
  • [2] Hamilton-Jacobi quantization of constrained systems with second-order Lagrangians
    Muslih, SI
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (12) : 1163 - 1171
  • [3] HAMILTON-JACOBI THEORY FOR CONSTRAINED SYSTEMS
    DOMINICI, D
    LONGHI, G
    GOMIS, J
    PONS, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (08) : 2439 - 2452
  • [4] On the Hamilton-Jacobi treatment of constrained systems
    Muslih, SI
    El-Zalan, HA
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (01) : 63 - 66
  • [5] Hamilton-Jacobi treatment of constrained systems
    Nawafleh, KI
    Rabei, EM
    Ghassib, HB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (03): : 347 - 354
  • [6] Involutive constrained systems and Hamilton-Jacobi formalism
    Bertin, M. C.
    Pimentel, B. M.
    Valcarcel, C. E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [7] HAMILTON-JACOBI THEORY OF DISCRETE, REGULAR CONSTRAINED SYSTEMS
    GULER, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1987, 100 (02): : 267 - 276
  • [8] HAMILTON-JACOBI THEORY FOR SOME CLASS OF CONSTRAINED SYSTEMS
    CHUDY, L
    PAZMA, V
    ACTA PHYSICA SLOVACA, 1985, 35 (01) : 3 - 8
  • [9] QUANTIZATION AND CLASSICAL HAMILTON-JACOBI EQUATION
    MOTZ, L
    PHYSICAL REVIEW, 1962, 126 (01): : 378 - &
  • [10] HAMILTON-JACOBI QUANTIZATION OF GENERAL RELATIVITY
    KOMAR, A
    PHYSICAL REVIEW, 1967, 153 (05): : 1385 - &