BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues

被引:30
|
作者
Zou, Luli S. [1 ]
Erdos, Michael R. [1 ]
Taylor, D. Leland [1 ,2 ]
Chines, Peter S. [1 ]
Varshney, Arushi [3 ]
Parker, Stephen C. J. [3 ,5 ]
Collins, Francis S. [1 ]
Didion, John P. [1 ]
机构
[1] NHGRI, NIH, Bethesda, MD 20892 USA
[2] Wellcome Genome Campus, European Bioinformat Inst, European Mol Biol Lab, Hinxton, Cambs, England
[3] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[4] Washington Univ, Sch Med, St Louis, MO 63108 USA
[5] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
BMC GENOMICS | 2018年 / 19卷
关键词
DNA methylation; XGBoost; Whole-genome bisulfite sequencing (WGBS); EPIC; Imputation; Adipose; Skeletal muscle; Pancreatic islets; GENOTYPE IMPUTATION; WIDE ASSOCIATION; BINDING; GENE; SUSCEPTIBILITY; IDENTIFICATION; SIGNATURE; ORIGIN;
D O I
10.1186/s12864-018-4766-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; however, the data suffer from biases due to coverage depth variability. Imputation of methylation values at low-coverage sites may mitigate these biases while also identifying important genomic features associated with predictive power. Results: Here we describe BoostMe, a method for imputing low-quality DNA methylation estimates within whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting algorithm, XGBoost, and leverages information from multiple samples for prediction. We find that BoostMe outperforms existing algorithms in speed and accuracy when applied to WGBS of human tissues. Furthermore, we show that imputation improves concordance between WGBS and the MethylationEPIC array at low WGBS depth, suggesting improved WGBS accuracy after imputation. Conclusions: Our findings support the use of BoostMe as a preprocessing step for WGBS analysis.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues
    Luli S. Zou
    Michael R. Erdos
    D. Leland Taylor
    Peter S. Chines
    Arushi Varshney
    Stephen C. J. Parker
    Francis S. Collins
    John P. Didion
    BMC Genomics, 19
  • [2] Whole-genome bisulfite sequencing identifies HDAC3-mediated DNA methylation in multiple myeloma
    Ogiya, Daisuke
    Ohguchi, Hiroto
    Liu, Jiye
    Kurata, Keiji
    Adamia, Sophia
    Hideshima, Teru
    Anderson, Kenneth C.
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2019, 19 (10): : E72 - E72
  • [3] Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing
    Ziller, Michael J.
    Hansen, Kasper D.
    Meissner, Alexander
    Aryee, Martin J.
    NATURE METHODS, 2015, 12 (03) : 230 - +
  • [4] Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing
    Ziller M.J.
    Hansen K.D.
    Meissner A.
    Aryee M.J.
    Nature Methods, 2015, 12 (3) : 230 - 232
  • [5] Identification of DNA Methylation Differences in Pituitary Tissues of Sichuan White Geese Using Whole-Genome Bisulfite Sequencing (WGBS)
    Ma, Lin
    Zhao, Xianzhi
    Guoda, A.
    Song, Tongtong
    Wu, Meng
    Yan, Zhihao
    Xiao, Min
    Jiang, Wenbo
    Gao, Yixiao
    Wang, Haiwei
    Chen, Zhuping
    Zhang, Keshan
    Xue, Jiajia
    Luo, Yi
    Wang, Chao
    Xie, Youhui
    Chen, Ying
    Gao, Guangliang
    Wang, Qigui
    BIOLOGY-BASEL, 2025, 14 (02):
  • [6] epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data
    Vincent, Martin
    Mundbjerg, Kamilla
    Pedersen, Jakob Skou
    Liang, Gangning
    Jones, Peter A.
    Orntoft, Torben Falck
    Sorensen, Karina Dalsgaard
    Wiuf, Carsten
    GENOME BIOLOGY, 2017, 18
  • [7] Global analysis of DNA methylation in hepatocellular carcinoma via a whole-genome bisulfite sequencing approach
    Yan, Qian
    Tang, Ying
    He, Fan
    Xue, Jiao
    Zhou, Ruisheng
    Zhang, Xiaoying
    Luo, Huiyan
    Zhou, Daihan
    Wang, Xiongwen
    GENOMICS, 2021, 113 (05) : 3618 - 3634
  • [8] epiG: statistical inference and profiling of DNA methylation from whole-genome bisulfite sequencing data
    Martin Vincent
    Kamilla Mundbjerg
    Jakob Skou Pedersen
    Gangning Liang
    Peter A. Jones
    Torben Falck Ørntoft
    Karina Dalsgaard Sørensen
    Carsten Wiuf
    Genome Biology, 18
  • [9] Whole-genome bisulfite sequencing reveals the function of DNA methylation in the allotransplantation immunity of pearl oysters
    Gu, Zefeng
    Yang, Jingmiao
    Lu, Jinzhao
    Yang, Min
    Deng, Yuewen
    Jiao, Yu
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [10] Beadchip technology to detect DNA methylation in mouse faithfully recapitulates whole-genome bisulfite sequencing
    Martin, Elizabeth M.
    Grimm, Sara A.
    Xu, Zongli
    Taylor, Jack A.
    Wade, Paul A.
    EPIGENOMICS, 2023, 15 (03) : 115 - 129