A folk theorem for one-shot Bertrand games

被引:41
|
作者
Baye, MR
Morgan, J
机构
[1] Indiana Univ, Kelley Sch Business, Bloomington, IN 47405 USA
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
folk theorem; Bertrand paradox;
D O I
10.1016/S0165-1765(99)00118-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
We show that bounded monopoly profits are essential for the uniqueness of the Bertrand paradox (zero profit) outcome. Otherwise, a folk theorem obtains for one-shot homogeneous product Bertrand games: any positive (but finite) payoff vector can be achieved in a symmetric mixed-strategy Nash equilibrium. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [1] Learning in one-shot strategic form games
    Altman, Alon
    Bercovici-Boden, Avivit
    Tennenholtz, Moshe
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 6 - 17
  • [2] One-shot computation of reachable sets for differential games
    Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
    不详
    [J]. HSCC - Proc. Int. Conf. Hybrid Syst.: Comput. Control, Part CPSWeek, 1600, (183-192):
  • [3] A one-shot proof of Arrow’s theorem and the Gibbard–Satterthwaite theorem
    Ning Neil Yu
    [J]. Economic Theory Bulletin, 2013, 1 (2) : 145 - 149
  • [4] A one-shot proof of Arrow’s impossibility theorem
    Ning Neil Yu
    [J]. Economic Theory, 2012, 50 : 523 - 525
  • [5] A one-shot proof of Arrow's impossibility theorem
    Yu, Ning Neil
    [J]. ECONOMIC THEORY, 2012, 50 (02) : 523 - 525
  • [6] ONE NAND ONE-SHOT
    LESERVE, B
    [J]. ELECTRONIC ENGINEER, 1971, 30 (03): : 54 - &
  • [7] One-shot holography
    Akers, Chris
    Levine, Adam
    Penington, Geoff
    Wildenhain, Elizabeth
    [J]. SCIPOST PHYSICS, 2024, 16 (06):
  • [8] CRIME AND PUNISHMENT - ARE ONE-SHOT, 2-PERSON GAMES ENOUGH
    BIANCO, WT
    ORDESHOOK, PC
    TSEBELIS, G
    [J]. AMERICAN POLITICAL SCIENCE REVIEW, 1990, 84 (02) : 569 - 586
  • [9] One-Shot Decoupling
    Dupuis, Frederic
    Berta, Mario
    Wullschleger, Juerg
    Renner, Renato
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 328 (01) : 251 - 284
  • [10] MIGHTY ONE-SHOT
    COPP, RM
    [J]. HYDRAULICS & PNEUMATICS, 1972, 25 (10): : 94 - &