Novel Robust and Invariant Feature Extraction by Spatio-Temporal Decomposition of Images

被引:0
|
作者
Korikana, Shiva Kumar [1 ]
Chandrasekaran, V. [1 ]
机构
[1] Sri Sathya Sai Univ, Dept Math & Comp Sci, Prasanthinilayam, Puttaparthi, India
关键词
D O I
10.1109/CIT.2008.Workshops.27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature extraction is a major step in all pattern recognition and image processing applications. Conventional feature extraction methods when used for extracting physical quantities like mean, entropy etc. are not suitable for automation due to complexity of the feature extraction process. In this paper we propose a simple and novel feature extraction technique that decomposes the original image into a series of sparse images using a time varying selection criterion on the spatial plane. Features are then extracted from each of these sparse images. The feature set, when carefully analyzed and interpreted, is seen to perform as well or even better than their conventional counterparts for recognition and classification. The technique is demonstrated to be robust against noise and results in highly discriminatory features. Also, in this paper the technique to obtain shift invariant features is proposed.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [1] Spatio-temporal Prompting Network for Robust Video Feature Extraction
    Sun, Guanxiong
    Wang, Chi
    Zhang, Zhaoyu
    Deng, Jiankang
    Zafeiriou, Stefanos
    Hua, Yang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13541 - 13551
  • [2] EigenSegments: A spatio-temporal decomposition of an ensemble of images
    Avidan, S
    [J]. COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 747 - 758
  • [3] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [4] Spatial and spatio-temporal feature extraction from 4D echocardiography images
    Awan, Ruqayya
    Rajpoot, Kashif
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 : 138 - 147
  • [5] Spatio-temporal feature extraction in sensory electroneurographic signals
    Silveira, C.
    Khushaba, R. N.
    Brunton, E.
    Nazarpour, K.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2228):
  • [6] PROGRESSIVE SPATIO-TEMPORAL FEATURE EXTRACTION MODEL FOR GAIT RECOGNITION
    Su, Jingran
    Zhao, Yang
    Li, Xuelong
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1004 - 1008
  • [7] Convolutional Spiking Neural Networks for Spatio-Temporal Feature Extraction
    Samadzadeh, Ali
    Far, Fatemeh Sadat Tabatabaei
    Javadi, Ali
    Nickabadi, Ahmad
    Chehreghani, Morteza Haghir
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (06) : 6979 - 6995
  • [8] Convolutional Spiking Neural Networks for Spatio-Temporal Feature Extraction
    Ali Samadzadeh
    Fatemeh Sadat Tabatabaei Far
    Ali Javadi
    Ahmad Nickabadi
    Morteza Haghir Chehreghani
    [J]. Neural Processing Letters, 2023, 55 : 6979 - 6995
  • [9] Spatio-Temporal Koopman Decomposition
    Soledad Le Clainche
    José M. Vega
    [J]. Journal of Nonlinear Science, 2018, 28 : 1793 - 1842
  • [10] Spatio-Temporal Koopman Decomposition
    Le Clainche, Soledad
    Vega, Jose M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1793 - 1842