Design and Cold Test of Flat-Roofed Sine Waveguide Circuit for W-Band Traveling-Wave Tube

被引:10
|
作者
Fang, Shuanzhu [1 ]
Xu, Jin [1 ]
Yin, Hairong [1 ]
Yin, Pengcheng [1 ]
Lei, Xia [2 ,3 ]
Wu, Gangxiong [1 ]
Yang, Ruichao [1 ]
Luo, Jinjing [1 ]
Yue, Lingna [1 ]
Zhao, Guoqing [1 ]
Wang, Wenxiang [1 ]
Liu, Wenxin [4 ]
Li, Dazhi [5 ]
Wei, Yanyu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
[3] Civil Aviat Flight Univ China, Chengdu 618300, Peoples R China
[4] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[5] Neubrex Ltd, Kobe, Hyogo 6500023, Japan
基金
中国国家自然科学基金;
关键词
Flat-roofed sine waveguide (SWG); slow wave structure (SWS); traveling-wave tube (TWT); voltage standing wave ratio (VSWR); W-band;
D O I
10.1109/TPS.2020.3031956
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The W-band flat-roofed sine waveguide (SWG) slow wave circuit was designed and processed in this article. Considering the limitations on present practical fabrication level, sensitivity analysis was performed on the potential influencing factors for the performance of the flat-roofed SWG slow wave structure (SWS). As indicated by the calculation results, the gap between the SWSs and the side-wall strips could have a significant impact on the dispersion, interaction impedance, and the transmission of the entire slow wave circuit. Based on the theoretical analysis, two types of W-band flat-roofed SWG slow wave circuits were fabricated and tested. The side-wall strips of the two circuits are processed with/without rounded corner. The circuit without rounded corner may cause a large gap and severe reflection. In comparison, the other one with rounded corners can make the parts fit tighter, thus minimizing the potential gap. The test results demonstrate that the W-band flat-roofed SWG traveling-wave tube (TWT) possesses a voltage standing wave ratio less than 1.8, which is basically consistent with the simulation results.
引用
收藏
页码:4021 / 4028
页数:8
相关论文
共 50 条
  • [1] Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
    Fang, Shuanzhu
    Xu, Jin
    Jiang, Xuebing
    Lei, Xia
    Wu, Gangxiong
    Li, Qian
    Ding, Chong
    Yu, Xiang
    Wang, Wenxiang
    Gong, Yubin
    Wei, Yanyu
    AIP ADVANCES, 2018, 8 (05)
  • [2] Study on a Novel Dual-Beam Flat-Roofed Sine Waveguide Traveling-Wave Tube
    Fang, Shuanzhu
    Wei, Yanyu
    Liu, Lei
    Qiu, Baojun
    Wang, Xiaoqiang
    Luo, Daojun
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (12) : 4812 - 4819
  • [3] Design of W-band Folded Waveguide Traveling-Wave Tube
    Zhang, Luqi
    Jiang, Yi
    Lei, Wenqiang
    Song, Rui
    Hu, Peng
    Ma, Guowu
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [4] Study on W-band Sheet Electron Beam Sine Waveguide Traveling-Wave Tube
    Xu Xiong
    Wei Yanyu
    Shen Fei
    Gong Yubin
    Yue Lingna
    Tang Tao
    Zhao Guoqing
    Wang Wenxiang
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (01): : 169 - 172
  • [5] Demonstration of a Double Flat-Roofed Sine Waveguide Slow Wave Structure With Low Loss for 220-GHz Traveling-Wave Tube
    Zhang, Luqi
    Ma, Guowu
    Jiang, Yi
    Lei, Wenqiang
    Hu, Peng
    Tang, Xianfeng
    Chen, Hongbin
    Wei, Yanyu
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (03): : 291 - 294
  • [6] An optimal design of W-band truncated sine waveguide traveling wave tube
    Yang Quan
    Zhang Lu-Qi
    Fang Shuan-Zhu
    Guo Ting-Ting
    Ding Chong
    Li Qian
    Lei Xia
    Wu Gang-Xiong
    Jiang Xue-Bing
    Xu Jing
    Zhao Guo-Qing
    Wang Wen-Xiang
    Gong Yu-Shan
    Wei Yan-Yu
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2018, 37 (02) : 235 - 240
  • [7] G-band phase-velocity-taper Traveling Wave Tube Based On Quasi Flat-roofed Sine Waveguide
    Zhang, Jian
    Xu, Jin
    Jiang, Xuebing
    Luo, Jinjing
    Yin, Pengcheng
    Fang, Shuanzhu
    Yang, Ruichao
    Jia, Dongdong
    Guo, Ziqi
    Li, Hongru
    Wu, Gangxiong
    Yin, Hairong
    Yue, Lingna
    Wang, Wengxiang
    Feng, Jinjun
    Li, D. Z.
    Wei, YanYu
    IVEC 2021: 2021 22ND INTERNATIONAL VACUUM ELECTRONICS CONFERENCE, 2021,
  • [8] Design of a W-band traveling-wave tube based on sine waveguide slow-wave structure with sheet electron beam
    Fang, S. Z.
    Xu, J.
    Lei, X.
    Jiang, X. B.
    Yin, P. C.
    Li, L.
    Wu, G. X.
    Yang, R. C.
    Li, Q.
    Yin, H. R.
    Yue, L. N.
    Zhao, G. Q.
    Wang, W. X.
    Gong, Y. B.
    Wei, Y. Y.
    Xu, X.
    Liu, Y.
    2019 INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2019,
  • [9] Analysis of W-band traveling-wave tube based upon slotted sine waveguide slow wave structure
    Luqi, Zhang
    Jiang, Yi
    Lei, Wenqiang
    Song, Rui
    Hu, Peng
    Ma, Guowu
    Wei, Yanyu
    AIP ADVANCES, 2021, 11 (12)
  • [10] W-band Multi-Beam Sine Waveguide Traveling-Wave Tube with Low Current Density
    Fang, Shuanzhu
    Xu, Jin
    Lei, Xia
    Wu, Gangxiong
    Yang, Ruichao
    Yin, Pengcheng
    Yin, Hairong
    Yue, Lingna
    Zhao, Guoqing
    Yang, Wei
    Lu, Zhigang
    Gong, Yubin
    Wang, Wenxiang
    Wei, Yanyu
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON VACUUM ELECTRONICS (IVEC 2020), 2020, : 231 - 232