Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right ventricular function

被引:17
|
作者
Philip, Jennifer L. [1 ,2 ]
Murphy, Thomas M. [1 ]
Schreier, David A. [1 ]
Stevens, Sydney [4 ]
Tabima, Diana M. [1 ]
Albrecht, Margie [4 ]
Frump, Andrea L. [4 ]
Hacker, Timothy A. [3 ]
Lahm, Tim [4 ,5 ,6 ]
Chesler, Naomi C. [1 ,3 ]
机构
[1] Univ Wisconsin, Dept Biomed Engn, Coll Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Surg, 600 Highland Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Med, Madison, WI 53706 USA
[4] Indiana Univ Sch Med, Dept Med, Indianapolis, IN 46202 USA
[5] Indiana Univ Sch Med, Dept Cellular & Integrat Physiol, Indianapolis, IN 46202 USA
[6] Richard L Roudebush Vet Affairs Med Ctr, 1481 W 10th St, Indianapolis, IN 46202 USA
关键词
heart failure; pulmonary vascular remodeling; right ventricle dysfunction; secondary pulmonary hypertension; ventricular-vascular coupling; ISOLATED MOUSE LUNGS; EJECTION FRACTION; ARTERIAL-HYPERTENSION; MYOCARDIAL-INFARCTION; MOLECULAR-MECHANISMS; MAGNETIC-RESONANCE; EXPERIMENTAL-MODEL; PRESSURE; DISEASE; ESTROGEN;
D O I
10.1152/ajpheart.00319.2018
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Left heart failure (LHF) is the most common cause of pulmonary hypertension, which confers an increase in morbidity and mortality in this context. Pulmonary vascular resistance has prognostic value in LHF, but otherwise the mechanical consequences of LHF for the pulmonary vasculature and right ventricle (RV) remain unknown. We sought to investigate mechanical mechanisms of pulmonary vascular and RV dysfunction in a rodent model of LHF to address the knowledge gaps in understanding disease pathophysiology. LHF was created using a left anterior descending artery ligation to cause myocardial infarction (MI) in mice. Sham animals underwent thoracotomy alone. Echocardiography demonstrated increased left ventricle (LV) volumes and decreased ejection fraction at 4 wk post-MI that did not normalize by 12 wk post-MI. Elevation of LV diastolic pressure and RV systolic pressure at 12 wk post-MI demonstrated pulmonary hypertension (PH) due to LHF. There was increased pulmonary arterial elastance and pulmonary vascular resistance associated with perivascular fibrosis without other remodeling. There was also RV contractile dysfunction with a 35% decrease in RV end-systolic elastance and 66% decrease in ventricular-vascular coupling. In this model of PH due to LHF with reduced ejection fraction, pulmonary fibrosis contributes to increased RV afterload, and loss of RV contractility contributes to RV dysfunction. These are key pathologic features of human PH secondary to LHF. In the future, novel therapeutic strategies aimed at preventing pulmonary vascular mechanical changes and RV dysfunction in the context of LHF can be tested using this model. NEW & NOTEWORTHY In this study, we investigate the mechanical consequences of left heart failure with reduced ejection fraction for the pulmonary vasculature and right ventricle. Using comprehensive functional analyses of the cardiopulmonary system in vivo and ex vivo, we demonstrate that pulmonary fibrosis contributes to increased RV afterload and loss of RV contractility contributes to RV dysfunction. Thus this model recapitulates key pathologic features of human pulmonary hypertension-left heart failure and offers a robust platform for future investigations.
引用
收藏
页码:H1167 / H1177
页数:11
相关论文
共 50 条
  • [1] Right Ventricular Energy Loss in Heart Failure Patients Relates to Pulmonary Vascular Resistance and Not Right Ventricular Function
    Soyama, Yuko
    Kagiyama, Nobuyuki
    Vader, Justin
    Sugahara, Masataka
    Gorcsan, John
    CIRCULATION, 2018, 138
  • [2] Left atrial dysfunction in heart failure: clinical correlates and implications for pulmonary vascular and right heart function
    Melenovsky, Wojtech
    Hwang, S. J.
    Redfield, M. M.
    Zakeri, R.
    Borlaug, B. A.
    EUROPEAN JOURNAL OF HEART FAILURE, 2014, 16 : 100 - 100
  • [3] Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function
    Lammers, Steven
    Scott, Devon
    Hunter, Kendall
    Tan, Wei
    Shandas, Robin
    Stenmark, Kurt R.
    COMPREHENSIVE PHYSIOLOGY, 2012, 2 (01) : 295 - 319
  • [4] Prognostic value of pulmonary hypertension and right ventricular function in heart failure
    Sabri, F. Z.
    Abidi, G.
    Asadi, A.
    Arhlade, F.
    Habbal, R.
    EUROPEAN JOURNAL OF HEART FAILURE, 2015, 17 : 392 - 392
  • [5] Pulmonary Hypertension in Heart Failure Epidemiology, Right Ventricular Function, and Survival
    Gerges, Mario
    Gerges, Christian
    Pistritto, Anna-Maria
    Lang, Marie B.
    Trip, Pia
    Jakowitsch, Johannes
    Binder, Thomas
    Lang, Irene M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 192 (10) : 1234 - 1246
  • [6] PULMONARY VASCULAR SCLEROSIS WITH RIGHT VENTRICULAR FAILURE
    BARRETT, AM
    COLE, L
    BRITISH HEART JOURNAL, 1946, 8 (02): : 76 - 82
  • [7] Introduction to Review Series on Pulmonary Vascular Disease and Right Ventricular Heart Failure
    Brittain, Evan L.
    Hemnes, Anna R.
    CIRCULATION RESEARCH, 2022, 130 (09) : 1362 - 1364
  • [8] Radiographic Pulmonary Vascular Pruning and Right Ventricular Function in the Framingham Heart Study
    Synn, A.
    Tsao, C.
    Washko, G. R.
    Estepar, R. San Jose
    O'Connor, G. T.
    Mittleman, M.
    Rice, M. B.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [9] How right ventricular function relates to pulmonary artery pressure in advanced congestive heart failure: Prognostic implications
    Ghio, S
    Gavazzi, A
    Sebastiani, R
    Klersy, C
    Scelsi, L
    Campana, C
    Recusani, F
    Inserra, C
    Laudisa, ML
    Tavazzi, L
    CIRCULATION, 1999, 100 (18) : 580 - 580
  • [10] Right ventricular function and its coupling with the pulmonary circulation in acute heart failure
    Barki, M.
    Losito, M.
    Caracciolo, M. M.
    Bandera, F.
    Rovida, M.
    Alfonzetti, E.
    Guazzi, M.
    EUROPEAN HEART JOURNAL, 2020, 41 : 1218 - 1218