Invariant monotone vector fields on Riemannian manifolds

被引:33
|
作者
Barani, A. [1 ]
Pouryayevali, M. R. [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
关键词
Generalized invex functions; Monotone vector fields; Invariant monotone vector fields; Riemannian manifolds; GENERALIZED MONOTONICITY; CONVEXITY; ALGORITHM; CRITERIA;
D O I
10.1016/j.na.2008.02.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Various concepts of invariant monotone vector fields on Riemannian manifolds are introduced. Some examples of invariant monotone vector fields are given. Several notions of invexities for functions on Riemannian manifolds are defined and their relations with invariant monotone vector fields are studied. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1850 / 1861
页数:12
相关论文
共 50 条
  • [1] GENERALIZED INVEXITY AND GENERALIZED INVARIANT MONOTONE VECTOR FIELDS ON RIEMANNIAN MANIFOLDS WITH APPLICATIONS
    Chen, Sheng-Lan
    Huang, Nan-Jing
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (07) : 1305 - 1320
  • [2] Monotone and Accretive Vector Fields on Riemannian Manifolds
    Wang, J. H.
    Lopez, G.
    Martin-Marquez, V.
    Li, C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (03) : 691 - 708
  • [3] Monotone and Accretive Vector Fields on Riemannian Manifolds
    J. H. Wang
    G. López
    V. Martín-Márquez
    C. Li
    Journal of Optimization Theory and Applications, 2010, 146 : 691 - 708
  • [4] Pseudo-Jacobian and Characterization of Monotone Vector Fields on Riemannian Manifolds
    Ghahraei, E.
    Hosseini, S.
    Pouryayevali, M. R.
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 149 - 168
  • [5] Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds
    Gil-Medrano, O
    González-Dávila, JC
    Vanhecke, L
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (02): : 377 - 409
  • [6] Non-existence of strictly monotone vector fields on certain Riemannian manifolds
    Cruz Neto, J. X.
    Melo, I. D.
    Sousa, P. A.
    ACTA MATHEMATICA HUNGARICA, 2015, 146 (01) : 240 - 246
  • [7] Non-existence of strictly monotone vector fields on certain Riemannian manifolds
    J. X. Cruz Neto
    I. D. Melo
    P. A. Sousa
    Acta Mathematica Hungarica, 2015, 146 : 240 - 246
  • [8] On Killing Vector Fields on Riemannian Manifolds
    Deshmukh, Sharief
    Belova, Olga
    MATHEMATICS, 2021, 9 (03) : 1 - 17
  • [9] On concurrent vector fields on Riemannian manifolds
    Ishan, Amira
    AIMS MATHEMATICS, 2023, 8 (10): : 25097 - 25103
  • [10] RIEMANNIAN MANIFOLDS WITH MANY KILLING VECTOR FIELDS
    STEHNEY, AK
    MILLMAN, RS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A580 - A580