On Complex Fibonacci Quaternions

被引:68
|
作者
Halici, Serpil [1 ]
机构
[1] Sakarya Univ, Fac Arts & Sci, Dept Math, TR-54187 Sakarya, Turkey
关键词
Recurrence Relations; Fibonacci Numbers; Quaternions;
D O I
10.1007/s00006-012-0337-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Horadam defined the Fibonacci quaternions and established a few relations for the Fibonacci quaternions. In this paper, we investigate the complex Fibonacci quaternions and give the generating function and Binet formula for these quaternions. Moreover, we also give the matrix representations of them.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] On Complex Fibonacci Quaternions
    Serpil Halici
    Advances in Applied Clifford Algebras, 2013, 23 : 105 - 112
  • [2] COMPLEX FIBONACCI NUMBERS AND FIBONACCI QUATERNIONS
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (03): : 289 - &
  • [3] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Flaut, Cristina
    Shpakivskyi, Vitalii
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 673 - 688
  • [4] On Generalized Fibonacci Quaternions and Fibonacci-Narayana Quaternions
    Cristina Flaut
    Vitalii Shpakivskyi
    Advances in Applied Clifford Algebras, 2013, 23 : 673 - 688
  • [5] On Fibonacci Quaternions
    Halici, Serpil
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (02) : 321 - 327
  • [6] On Fibonacci Quaternions
    Serpil Halici
    Advances in Applied Clifford Algebras, 2012, 22 : 321 - 327
  • [7] On a generalization of dual-generalized complex Fibonacci quaternions
    Tan, Elif
    Ocal, Umut
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (04) : 635 - 646
  • [8] Bicomplex Fibonacci quaternions
    Aydin, F. Torunbalci
    CHAOS SOLITONS & FRACTALS, 2018, 106 : 147 - 153
  • [9] Fibonacci Generalized Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 631 - 641
  • [10] Dual Fibonacci Quaternions
    Semra Kaya Nurkan
    İkay Arslan Güven
    Advances in Applied Clifford Algebras, 2015, 25 : 403 - 414