Block error correcting codes using finite-field wavelet transforms

被引:14
|
作者
Fekri, F [1 ]
McLaughlin, SW [1 ]
Mersereau, RM [1 ]
Schafer, RW [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
finite-field wavelets; maximum-distance separable (MDS) codes; orthogonal multichannel filter banks; quasi-circulant codes;
D O I
10.1109/TSP.2005.863011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper extends the popular wavelet framework for signal representation to error control coding. The primary goal of the paper is to use cyclic finite-field wavelets and filter banks to study arbitrary-rate L-circulant codes. It is shown that the wavelet representation leads to an efficient implementation of the block code encoder and the syndrome generator. A formulation is then given for constructing maximum-distance separable (MDS) wavelet codes using frequency-domain constraints. This paper also studies the possibility of finding a wavelet code whose tail-biting trellis is efficient for soft-decision decoding. The wavelet method may provide an easy way to look for such codes.
引用
收藏
页码:991 / 1004
页数:14
相关论文
共 50 条
  • [1] Two-dimensional error correcting codes using finite-field wavelets
    Sartipi, M
    Fekri, F
    [J]. 2004 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2004, : 22 - 27
  • [2] Double circulant self-dual codes using finite-field wavelet transforms
    Fekri, F
    McLaughlin, SW
    Mersereau, RM
    Schafer, RW
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 355 - 364
  • [3] ON THE NUMBER OF POINTS OF A CURVE OVER A FINITE-FIELD - APPLICATION TO ERROR-CORRECTING CODES
    PERRET, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (03): : 177 - 182
  • [4] FINITE-FIELD TRANSFORMS AND SYMMETRY GROUPS
    DESOUZA, RMC
    FARRELL, PG
    [J]. DISCRETE MATHEMATICS, 1985, 56 (2-3) : 111 - 116
  • [5] Error correcting codes, block designs, perfect secrecy and finite fields
    Bruen, Aiden A.
    Wehlau, David L.
    Forcinito, Mario
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2006, 93 (1-3) : 253 - 278
  • [6] Error Correcting Codes, Block Designs, Perfect Secrecy and Finite Fields
    Aiden A. Bruen
    David L. Wehlau
    Mario Forcinito
    [J]. Acta Applicandae Mathematica, 2006, 93 : 253 - 278
  • [7] Two Dimensional Error-Correcting Codes using Finite Field Fourier Transform
    Roy, Shounak
    Srinivasa, Shayan Garani
    [J]. 2015 IEEE INFORMATION THEORY WORKSHOP - FALL (ITW), 2015, : 119 - 123
  • [8] Multicarrier modulation via finite-field transforms
    Fekri, F
    Williams, DB
    [J]. PROCEEDINGS OF THE 2002 IEEE 10TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND SIGNAL PROCESSING EDUCATION WORKSHOP, 2002, : 16 - 19
  • [9] A CRYPTOGRAPHIC SYSTEM BASED ON FINITE-FIELD TRANSFORMS
    KRISHNAMURTHY, EV
    RAMACHANDRAN, V
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1980, 89 (02): : 75 - 93
  • [10] EXACT INVERSION OF A RATIONAL POLYNOMIAL MATRIX USING FINITE-FIELD TRANSFORMS
    KRISHNAMURTHY, EV
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) : 453 - 464