Field failure mechanism study of solder interconnection for crystalline silicon photovoltaic module

被引:63
|
作者
Jeong, Jae-Seong [1 ]
Park, Nochang [1 ]
Han, Changwoon [1 ]
机构
[1] Korea Elect Technol Inst KETI, Components & Mat Phys Res Ctr, Songnam, South Korea
关键词
D O I
10.1016/j.microrel.2012.06.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study investigates a solder interconnection failure of a 25-year-old crystalline silicon photovoltaic (c-Si PV) module and draws conclusions on the failure mechanism of the solder interconnection. The efficiency degradation of the 25-year-old c-Si PV module is -23%. Physical analysis of the solder interconnection failure finds solder to solder cracking and solder to Ag paste cracking. The main failure mechanism of the solder interconnection crack is caused by coefficient of thermal expansion (CTE) mismatch between the module material and the ribbon wire solder as shown by FMEA. To demonstrate the failure mechanism, a thermal cycle test is designed and conducted on a small c-Si PV module. The temperature cycle condition is -45 degrees C to 85 degrees C and the dwell time is 20 min. Measurements are carried out every 100 cycles monitoring the series resistance (Rs) through dark I-V. The result shows that Rs increases. After 1,000 cycles, the characteristics of dark I-V and light I-V are compared and analyzed. Failure mechanism analysis is conducted for the modules for which Pmax decreased with 20%. Water-jet techniques for cross-section and SEM are used to analyze the factor of resistance change and efficiency degradation. The failure mechanism of solder interconnection for c-Si PV Module is proved. (C) 2012 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:2326 / 2330
页数:5
相关论文
共 50 条
  • [1] A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assembly
    Zarmai, Musa T.
    Ekere, N. N.
    Oduoza, C. F.
    Amalu, Emeka H.
    APPLIED ENERGY, 2015, 154 : 173 - 182
  • [2] Impact of interconnection failure on photovoltaic module performance
    Colvin, Dylan J.
    Schneller, Eric J.
    Davis, Kristopher O.
    PROGRESS IN PHOTOVOLTAICS, 2021, 29 (05): : 524 - 532
  • [3] Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules
    Kim, Ju-Hee
    Park, Jongsung
    Kim, Donghwan
    Park, Nochang
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [4] The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module
    Kim, T. H.
    Park, N. C.
    Kim, D. H.
    MICROELECTRONICS RELIABILITY, 2013, 53 (9-11) : 1823 - 1827
  • [5] The mechanism of anti-potential induced degradation for crystalline silicon photovoltaic module
    Lianyungang Shenzhou New Energy Co., Ltd., Lianyungang
    222100, China
    不详
    200235, China
    Taiyangneng Xuebao, 11 (2698-2702):
  • [6] Research on decrease of cell to module loss for crystalline silicon photovoltaic module
    Yang, Jung Yup
    Ahn, Young Kyoung
    Huh, Pil Ho
    Nam, Jung Gyu
    Park, Min
    Kim, Min Gu
    Lee, Jun Young
    Ji, Yang Geun
    Kim, Dong Seop
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2013, 5 (05)
  • [7] Environmental impacts of crystalline silicon photovoltaic module production
    Alsema, Erik A.
    De Wild-Scholten, Mariska J.
    LIFE-CYCLE ANALYSIS TOOLS FOR GREEN MATERIALS AND PROCESS SELECTION, 2006, 895 : 73 - +
  • [8] A technical review of crystalline silicon photovoltaic module recycling
    Sanathi, Radhesh
    Banerjee, Sourish
    Bhowmik, Shantanu
    SOLAR ENERGY, 2024, 281
  • [9] Solder joint failure modes in the conventional crystalline Si module
    Itoh, Uichi
    Yoshida, Manabu
    Tokuhisa, Hideo
    Takeuchi, Kohichi
    Takemura, Yasuyuki
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2014), 2014, 55 : 464 - 468
  • [10] Study on Electrical Performance Failure of Mono-crystalline Silicon Photovoltaic Module After Outdoor Operation for 17 Years
    Lai H.
    Han H.
    Huang W.
    Dong X.
    Li B.
    Shen H.
    Liang Z.
    Cailiao Daobao/Materials Review, 2019, 33 (01): : 215 - 219