Neutrinos with Lorentz-violating operators of arbitrary dimension

被引:236
|
作者
Kostelecky, V. Alan [1 ]
Mewes, Matthew [2 ]
机构
[1] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[2] Swarthmore Coll, Dept Phys, Swarthmore, PA 19081 USA
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 09期
关键词
CPT VIOLATION; SUPERLUMINAL NEUTRINOS; TESTS; GRAVITY; OSCILLATIONS; INVARIANCE; SYMMETRY; PHENOMENOLOGY; CONSERVATION; RELATIVITY;
D O I
10.1103/PhysRevD.85.096005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The behavior of fermions in the presence of Lorentz and CPT violation is studied. Allowing for operators of any mass dimension, we classify all Lorentz-violating terms in the quadratic Lagrange density for free fermions. The result is adapted to obtain the effective Hamiltonian describing the propagation and mixing of three flavors of left-handed neutrinos in the presence of Lorentz violation involving operators of arbitrary mass dimension. A characterization of the neutrino coefficients for Lorentz violation is provided via a decomposition using spin-weighted spherical harmonics. The restriction of the general theory to various special cases is discussed, including among others the renormalizable limit, the massless scenario, flavor-blind and oscillation-free models, the diagonalizable case, and several isotropic limits. The formalism is combined with existing data on neutrino oscillations and kinematics to extract a variety of measures of coefficients for Lorentz and CPT violation. For oscillations, we use results from the short-baseline experiments LSND and MiniBooNE to obtain explicit sensitivities to effects from flavor-mixing Lorentz-violating operators up to mass dimension 10, and we present methods to analyze data from long-baseline experiments. For propagation, we use time-of-flight measurements from the supernova SN1987A and from a variety of experiments including MINOS and OPERA to constrain oscillation-free Lorentz-violating operators up to mass dimension 10, and we discuss constraints from threshold effects in meson decays and Cerenkov emission.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Fermions with Lorentz-violating operators of arbitrary dimension
    Kostelecky, V. Alan
    Mewes, Matthew
    [J]. PHYSICAL REVIEW D, 2013, 88 (09):
  • [2] Electrodynamics with Lorentz-violating operators of arbitrary dimension
    Kostelecky, V. Alan
    Mewes, Matthew
    [J]. PHYSICAL REVIEW D, 2009, 80 (01):
  • [3] Gauge field theories with Lorentz-violating operators of arbitrary dimension
    Kostelecky, V. Alan
    Li, Zonghao
    [J]. PHYSICAL REVIEW D, 2019, 99 (05)
  • [4] Superluminal neutrinos from Lorentz-violating dimension-5 operators
    C. A. G. Almeida
    M. A. Anacleto
    F. A. Brito
    E. Passos
    [J]. The European Physical Journal C, 2012, 72
  • [5] Superluminal neutrinos from Lorentz-violating dimension-5 operators
    Almeida, C. A. G.
    Anacleto, M. A.
    Brito, F. A.
    Passos, E.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (01):
  • [6] Formal Developments for Lorentz-Violating Dirac Fermions and Neutrinos
    Andrade de Simoes dos Reis, Joao Affieres
    Schreck, Marco
    [J]. SYMMETRY-BASEL, 2019, 11 (10):
  • [7] Neutrino splitting for Lorentz-violating neutrinos: Detailed analysis
    Somogyi, G.
    Nandori, I
    Jentschura, U. D.
    [J]. PHYSICAL REVIEW D, 2019, 100 (03)
  • [8] Quantum field theoretic properties of Lorentz-violating operators of nonrenormalizable dimension in the photon sector
    Schreck, M.
    [J]. PHYSICAL REVIEW D, 2014, 89 (10):
  • [9] Quantum field theoretic properties of Lorentz-violating operators of nonrenormalizable dimension in the fermion sector
    Schreck, M.
    [J]. PHYSICAL REVIEW D, 2014, 90 (08):
  • [10] Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube
    Abbasi, R.
    Abdou, Y.
    Abu-Zayyad, T.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. Bazo
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. -H.
    Benabderrahmane, M. L.
    BenZvi, S.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bose, D.
    Boeser, S.
    Botner, O.
    Braun, J.
    Buitink, S.
    Carson, M.
    Chirkin, D.
    Christy, B.
    Clem, J.
    Clevermann, F.
    Cohen, S.
    Colnard, C.
    Cowen, D. F.
    D'Agostino, M. V.
    Danninger, M.
    Davis, J. C.
    De Clercq, C.
    Demiroers, L.
    Depaepe, O.
    [J]. PHYSICAL REVIEW D, 2010, 82 (11):