Effect of the anisotropic thermal conductivity of GDL on the performance of PEM fuel cells

被引:31
|
作者
Alhazmi, N. [1 ]
Ingham, D. B. [1 ]
Ismail, M. S. [1 ]
Hughes, K. J. [1 ]
Ma, L. [1 ]
Pourkashanian, M. [1 ]
机构
[1] Univ Leeds, Ctr Computat Fluid Dynam, Energy Technol Innovat Initiat, Leeds LS2 9JT, W Yorkshire, England
关键词
PEM fuel cells; Gas diffusion layers; Through-plane thermal conductivity; In-plane thermal conductivity; TRANSPORT;
D O I
10.1016/j.ijhydene.2012.07.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas diffusion layers (GDLs) are one of the main components in proton exchange membrane (PEM) fuel cells. In this paper, the effect of anisotropic thermal conductivity of the GDL is numerically investigated under different operating temperatures. Furthermore, the sensitivity of the PEM fuel cell performance to the thermal conductivity of the GDL is investigated for both in-plane and through-plane directions and the temperature distributions between the different GDL thermal conductivities are compared. The results show that increasing the in-plane and through-plane thermal conductivity of the GDL increases the power density of PEM fuel cells significantly. Moreover, the temperature gradients show a greater sensitivity to the in-plane thermal conductivity of the GDL as opposed to the through-plane thermal conductivity. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:603 / 611
页数:9
相关论文
共 50 条
  • [1] Effect of anisotropic thermal conductivity of the GDL and current collector rib width on two-phase transport in a PEM fuel cell
    Bapat, Chaitanya J.
    Thynell, Stefan T.
    [J]. JOURNAL OF POWER SOURCES, 2008, 179 (01) : 240 - 251
  • [2] Effect of Hydrophobic and Structural Properties of GDL on PEM Fuel Cell Performance
    Park, Sehkyu
    Popov, Branko N.
    [J]. PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 1627 - 1633
  • [3] Effect of GDL ( plus MPL) Compression on the PEM Fuel Cell Performance
    Carcadea, E.
    Varlam, M.
    Ingham, D. B.
    Patularu, L. G.
    Marinoiu, A.
    Ion-Ebrasu, D.
    Stefanescu, I.
    [J]. POLYMER ELECTROLYTE FUEL CELLS 16 (PEFC 16), 2016, 75 (14): : 167 - 177
  • [4] Effect of cathode GDL characteristics on mass transport in PEM fuel cells
    Park, Sehkyu
    Popov, Branko N.
    [J]. FUEL, 2009, 88 (11) : 2068 - 2073
  • [5] An Investigation of GDL Porosity on PEM Fuel Cell Performance
    Kahveci, Elif Eker
    Taymaz, Imdat
    [J]. SDEWES: THE 8TH CONFERENCE ON SUSTAINABLE DEVELOPMENT OF ENERGY, WATER AND ENVIRONMENT SYSTEMS, 2014, 42 : 37 - 42
  • [6] Effect of hydrophobicity and pore geometry in cathode GDL on PEM fuel cell performance
    Park, Sehkyu
    Popov, Branko N.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (12) : 3473 - 3479
  • [7] Application of porous copper for GDL in PEM fuel cells
    Sima, C. M.
    Ciupina, V.
    Prodan, G.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2015, 17 (5-6): : 602 - 607
  • [8] EFFECT OF PTFE ON THERMAL CONDUCTIVITY OF GAS DIFFUSION LAYERS OF PEM FUEL CELLS
    Sadeghifar, Hamidreza
    Djilali, Ned
    Bahrami, Majid
    [J]. PROCEEDINGS OF THE ASME 11TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2013, 2014,
  • [9] GDL modeling and validation for improved PEM fuel cell performance
    Hinebaugh, James
    Lee, Jongmin
    Yablecki, Jessica
    Bazylak, Aimy
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [10] Analysis of the operating pressure and GDL geometrical configuration effect on PEM fuel cell performance
    Ahmadi, Nima
    Dadvand, Abdolrahman
    Rezazadeh, Sajad
    Mirzaee, Iraj
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2016, 38 (08) : 2311 - 2325