Data Mining In Massive Spectral Data

被引:0
|
作者
Wang, Wenyu [1 ,2 ]
Wang, Xinjun [1 ]
Jiang, Bin [2 ]
Pan, Jingchang [2 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China
[2] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
PCA; LOF; Data mining; SVM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
with the astronomical spectra data grows rapidly, it becomes impossible for astronomers to read all the data manually, especially for some sky survey telescopes like SLOAN which will yield immense amounts of data every observational night. Automated astronomical data analysis software and system will be very necessary and useful. In this paper, a data mining application based on PCA (Principal Component Analysis) and LOF (Local Outlier Factor) is explored. Massive spectral data are clustered after dimension reduction by PCA and singular spectra candidates can be found out automatically. Some rare celestial body candidates are found out in massive spectra data that proves out method is feasible.
引用
收藏
页码:2357 / 2363
页数:7
相关论文
共 50 条
  • [1] Data mining of spectral data
    A. B. Bogdanov
    I. A. Borisova
    V. V. Dyubanov
    N. G. Zagoruiko
    O. A. Kutnenko
    A. V. Kuchkin
    M. A. Meshcheryakov
    N. G. Milovzorov
    [J]. Optoelectronics, Instrumentation and Data Processing, 2009, 45 (1) : 62 - 69
  • [2] Data Mining of Spectral Data
    Bogdanov, A. B.
    Borisova, I. A.
    Dyubanov, V. V.
    Zagoruiko, N. G.
    Kutnenko, O. A.
    Kuchkin, A. V.
    Meshcheryakov, M. A.
    Milovzorov, N. G.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2009, 45 (01) : 62 - 69
  • [3] Adaptive Data Mining Algorithm under the Massive Data
    Mo, Weijian
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND ELECTRONIC TECHNOLOGY, 2015, 3 : 37 - 40
  • [4] Approximate Data Mining using Sketches for Massive Data
    Gupta, Parul
    Agnihotri, Swati
    Saha, Suman
    [J]. FIRST INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE: MODELING TECHNIQUES AND APPLICATIONS (CIMTA) 2013, 2013, 10 : 781 - 787
  • [5] Massive data sets, data mining, and decision support
    Dalal, S
    Dumais, S
    Kettenring, J
    Kurien, V
    McIntosh, A
    Maitra, R
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 329 - 329
  • [6] Data mining of massive datasets in healthcare
    Goodall, CR
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (03) : 620 - 634
  • [7] Mining knowledge in astrophysical massive data sets
    Brescia, Massimo
    Longo, Giuseppe
    Pasian, Fabio
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 623 (02): : 845 - 849
  • [8] Massive Data Mining, Cyber Security Approach
    Guizani, Sghaier
    [J]. 2018 14TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2018, : 1368 - 1372
  • [9] Massive data mining for polymorphic code detection
    Payer, U
    Teufl, P
    Kraxberger, S
    Lamberger, M
    [J]. COMPUTER NETWORK SECURITY, PROCEEDINGS, 2005, 3685 : 448 - 453
  • [10] A general framework for mining massive data streams
    Domingos, P
    Hulten, G
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (04) : 945 - 949