3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow

被引:12
|
作者
Wen, Xin [1 ,2 ]
Zhou, Junsheng [1 ]
Liu, Yu-Shen [1 ]
Su, Hua [3 ]
Dong, Zhen [4 ]
Han, Zhizhong [5 ]
机构
[1] Tsinghua Univ, Sch Software, BNRist, Beijing, Peoples R China
[2] JD Com, JD Logist, Beijing, Peoples R China
[3] Kuaishou Technol, Beijing, Peoples R China
[4] Wuhan Univ, Wuhan, Peoples R China
[5] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/CVPR52688.2022.00378
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reconstructing 3D shape from a single 2D image is a challenging task, which needs to estimate the detailed 3D structures based on the semantic attributes from 2D image. So far, most of the previous methods still struggle to extract semantic attributes for 3D reconstruction task. Since the semantic attributes of a single image are usually implicit and entangled with each other, it is still challenging to reconstruct 3D shape with detailed semantic structures represented by the input image. To address this problem, we propose 3DAttriFlow to disentangle and extract semantic attributes through different semantic levels in the input images. These disentangled semantic attributes will be integrated into the 3D shape reconstruction process, which can provide definite guidance to the reconstruction of specific attribute on 3D shape. As a result, the 3D decoder can explicitly capture high-level semantic features at the bottom of the network, and utilize low-level features at the top of the network, which allows to reconstruct more accurate 3D shapes. Note that the explicit disentangling is learned without extra labels, where the only supervision used in our training is the input image and its corresponding 3D shape. Our comprehensive experiments on ShapeNet dataset demonstrate that 3DAttriFlow outperforms the state-of-the-art shape reconstruction methods, and we also validate its generalization ability on shape completion task. Code is available at https://github.com/junshengzhou/3DAttriFlow.
引用
收藏
页码:3793 / 3803
页数:11
相关论文
共 50 条
  • [1] 3D shape reconstruction from 2D images
    Hirano, Daisuke
    Funayama, Yusuke
    Maekawa, Takashi
    Computer-Aided Design and Applications, 2009, 6 (05): : 701 - 710
  • [2] 3D tumor shape reconstruction from 2D bioluminescence images
    Huang, Junzhou
    Huang, Xiaolei
    Metaxas, Dimitris
    Banerjee, Debarata
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 606 - +
  • [3] Reconstruction and flow simulation of 3D human trachea from 2D images
    National Center for High-Performance Computing, P.O.BOX 19-136, Hsinchu, Taiwan, Taiwan
    Hangkong Taikong ji Minhang Xuekan, 2007, 1 (39-44):
  • [4] 3D SHAPE RECONSTRUCTION FROM 2D ISAR MEASUREMENTS
    Sun, Jing
    Shang, She
    Xu, Jia-Dong
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 25 - 28
  • [5] 3D Kidney Reconstruction from 2D Ultrasound Images
    Teresa Alvarez-Gutierrez, Mariana
    Rodrigo Mejia-Rodriguez, Aldo
    Alejandro Cruz-Guerrero, Ines
    Roman Arce-Santana, Edgar
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 393 - 400
  • [6] A survey of 3D reconstruction algorithms from 2D images
    Hajjdiab, Hassan
    IMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2006, : 562 - 567
  • [7] Study on 3D Model Reconstruction of Vehicles from 2D Images
    Zhang, Huaishan
    Gao, Guanbin
    Li, Bo
    MACHINE DESIGN AND MANUFACTURING ENGINEERING III, 2014, : 625 - 628
  • [8] 3D Reconstruction of Face from 2D CT Scan Images
    Kumar, T. Senthil
    Vijai, Anupa
    INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND SYSTEM DESIGN 2011, 2012, 30 : 970 - 977
  • [9] 3D reconstruction from 2D images with hierarchical continuous simplices
    Yunhao Tan
    Jing Hua
    Ming Dong
    The Visual Computer, 2007, 23 : 905 - 914
  • [10] 3D reconstruction and visualization of microstructure surfaces from 2D images
    Samak, D.
    Fischer, A.
    Rittel, D.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2007, 56 (01) : 149 - 152