New surface critical exponents in the spherical model

被引:12
|
作者
Danchev, DM
Brankov, JG
Amin, ME
机构
[1] Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Acad. G Bonchev Str.
来源
关键词
D O I
10.1088/0305-4470/30/5/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The three-dimensional mean spherical model with a L-layer film geometry, under Neumann-Neumann and Neumann-Dirichlet boundary conditions is considered. Surafce fields h(1) and h(L). are supposed to act at the surfaces bounding the system. In the case of Neumann boundary conditions a new surface critical exponent Delta(1)(sb) = 3/2 is found. It is argued that this exponent corresponds to a special (surface-bulk) phase transition in the model. The Privman-Fisher scaling hypothesis for the free energy is verified and the corresponding scaling functions for both the Neumann-Neumann and Neumann-Dirichlet boundary conditions are explicitly derived. If the layer field is applied at some distance from the Dirichlet boundary, a family of critical exponents emerges: their values depend on the exponent defining how the distance scales with the finite size of the system, and interpolate continuously between the extreme cases Delta(1)(o) = 1/2 and Delta(1)(sb) = 3/2.
引用
收藏
页码:1387 / 1402
页数:16
相关论文
共 50 条
  • [1] Surface critical exponents for a three-dimensional modified spherical model
    Danchev, DM
    Brankov, JG
    Amin, ME
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16): : 5645 - 5656
  • [2] New relation for critical exponents in the Ising model
    Pishtshev, A.
    [J]. PHYSICS LETTERS A, 2007, 361 (1-2) : 152 - 155
  • [3] CRITICAL EXPONENTS FOR AN IRREVERSIBLE SURFACE-REACTION MODEL
    JENSEN, I
    FOGEDBY, HC
    DICKMAN, R
    [J]. PHYSICAL REVIEW A, 1990, 41 (06): : 3411 - 3414
  • [4] SURFACE CRITICAL EXPONENTS IN TERMS OF BULK EXPONENTS
    BRAY, AJ
    MOORE, MA
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (19) : 1046 - 1048
  • [5] On critical exponents for impact fragmentation of spherical solids
    Myagkov, N. N.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 534
  • [6] COMMENT ON EFFECTIVE CRITICAL EXPONENTS IN SPHERICAL LIMIT
    OKABE, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (04): : 1227 - 1229
  • [7] NONCLASSICAL CRITICAL EXPONENTS IN THE MEAN SPHERICAL APPROXIMATION
    CASTANO, F
    BREY, JJ
    SANTOS, A
    [J]. MOLECULAR PHYSICS, 1989, 66 (03) : 695 - 700
  • [8] DECORATED ISING-MODEL WITH SINGULAR CRITICAL SURFACE AND MODIFIED CRITICAL EXPONENTS
    URUMOV, V
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (04): : 777 - 781
  • [9] NEW RIGOROUS INEQUALITY FOR CRITICAL EXPONENTS IN ISING-MODEL
    SCHRADER, R
    [J]. PHYSICAL REVIEW B, 1976, 14 (01): : 172 - 173
  • [10] CRITICAL EXPONENTS FOR HEISENBERG MODEL
    GROVER, MK
    WEGNER, FJ
    KADANOFF, LP
    [J]. PHYSICAL REVIEW B, 1972, 6 (01): : 311 - &