Data-driven prognostic techniques for estimation of the remaining useful life of Lithium-ion batteries

被引:0
|
作者
Razavi-Far, Roozbeh [1 ]
Farajzadeh-Zanjani, Maryann [1 ]
Chakrabarti, Shiladitya [1 ]
Saif, Mehrdad [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
关键词
Estimation of the remaining useful life; ensemble learning; random forests; neural networks; group method of data handling; neuro-fuzzy systems and Li-ion batteries; MODEL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper aims to study the use of various data-driven techniques for estimating the remaining useful life (RUL) of the Li-ion batteries. These data-driven techniques include neural networks, group method of data handling, neuro-fuzzy networks, and random forests as an ensemble-based system. These prognostic techniques make use of the past and current data to predict the upcoming values of the capacity to estimate the remaining useful life of the battery. This work presents a comparative study of these data-driven prognostic techniques on constant load experimental data collected from Li-ion batteries. Experimental results show that these data-driven prognostic techniques can effectively estimate the remaining useful life of the Li-ion batteries. However, the random forests and neuro-fuzzy techniques outperform other competitors in terms of the RUL prediction error and root mean square error (RMSE), respectively.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hybrid Data-Driven Approach for Predicting the Remaining Useful Life of Lithium-Ion Batteries
    Li, Yuanjiang
    Li, Lei
    Mao, Runze
    Zhang, Yi
    Xu, Song
    Zhang, Jinglin
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2789 - 2805
  • [2] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [3] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70
  • [4] Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
    Song, Yuchen
    Liu, Datong
    Yang, Chen
    Peng, Yu
    MICROELECTRONICS RELIABILITY, 2017, 75 : 142 - 153
  • [5] Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies
    Wu, Lifeng
    Fu, Xiaohui
    Guan, Yong
    APPLIED SCIENCES-BASEL, 2016, 6 (06):
  • [6] A Data-Driven Method With Mode Decomposition Mechanism for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Wang, Jianguo
    Zhang, Shude
    Li, Chenyu
    Wu, Lifeng
    Wang, Yingzhou
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (11) : 13684 - 13695
  • [7] Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
    Nuhic, Adnan
    Terzimehic, Tarik
    Soczka-Guth, Thomas
    Buchholz, Michael
    Dietmayer, Klaus
    JOURNAL OF POWER SOURCES, 2013, 239 : 680 - 688
  • [8] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392
  • [9] A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries
    Sun, Tianfei
    Xia, Bizhong
    Liu, Yifan
    Lai, Yongzhi
    Zheng, Weiwei
    Wang, Huawen
    Wang, Wei
    Wang, Mingwang
    ENERGIES, 2019, 12 (19)
  • [10] Data-Driven Estimation of Remaining Useful Lifetime and State of Charge for Lithium-Ion Battery
    Du, Zhekai
    Zuo, Lin
    Li, Jingjing
    Liu, Yu
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 356 - 367