Development of an artificial intelligence model to dynamically predict metastatic recurrence of early-stage breast cancer patients.

被引:0
|
作者
Vaidya, Vivek Prabhakar
Agrawal, Smita
Vinod, Sai M.
Nagdewani, Sandeep
Chandrashekaraiah, Prajwal
Bhardwaj, Tapasya
Narayanan, Babu
机构
[1] SymphonyAI, Bengaluru, India
[2] Strand Ctr Genom & Personalized Med, Bangalore, Karnataka, India
[3] Concerto Hlth AI, Bangalore, Karnataka, India
[4] ConcertoAI, Wa, India
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
e13078
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Early-Stage Detection of Cancer in Breast Using Artificial Intelligence
    Kumar, M. N. Vimal
    Ram, S. Aakash
    Nageswari, C. Shobana
    Raveena, C.
    Rajan, S.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 2016 - 2028
  • [2] Development and Validation of a Digital-Artificial Intelligent (AI) enabled Assay to predict early-stage breast cancer recurrence
    Fernandez, G.
    Prastawa, M.
    Scott, R.
    Marami, B.
    Shpalensky, N.
    Madduri, A.
    Cascetta, K.
    Sawyer, M.
    Chan, M.
    Koll, G.
    Malinowski, D.
    De Angel, R.
    Shtabsky, A.
    Feliz, A.
    Hansen, T.
    Veremis, B.
    Cordon-Cardo, C.
    Zeineh, J.
    Donovan, M.
    EUROPEAN JOURNAL OF CANCER, 2022, 175 : S85 - S85
  • [3] Hormonal treatment (HT) and late recurrence in early-stage breast cancer (BC) patients.
    Barcenas, Carlos Hernando
    Sinha, Arup Kumar
    Hortobagyi, Gabriel N.
    Valero, Vicente
    Ueno, Naoto T.
    Giordano, Sharon Hermes
    Chavez-Mac Gregor, Mariana
    Brewster, Abenaa M.
    Lucci, Anthony
    Tripathy, Debu
    JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15)
  • [4] Combining the immunophenotyping of MDSCs and lymphocytes with artificial intelligence (AI) to predict early-stage breast cancer.
    Dominguez, George A.
    Roop, John
    Polo, Alexander
    Campisi, Anthony
    Gabrilovich, Dmitry I.
    Kumar, Amit
    CANCER IMMUNOLOGY RESEARCH, 2020, 8 (04) : 44 - 45
  • [5] Statistical model to predict brain metastasis risk in patients with early-stage breast cancer
    Abderrahman, B.
    Ibrahim, N. K.
    Hess, K. R.
    ANNALS OF ONCOLOGY, 2017, 28
  • [6] Artificial intelligence algorithms for recurrence risk score prediction in early-stage breast cancer: A multicenter study of 437 cases
    Bayram, Ertugrul
    Basaran, Gul
    Gokmen, Erhan
    Mandel, Nil Molinas
    Oyan, Basak
    Uskent, Necdet
    Karagoz, Bulent
    Yildirim, Yesim
    Karaaslan, Sinan
    Guler, Emine Nilufer
    Eralp, Yesim
    Er, Ozlem
    Karaoglu, Aziz
    Komurcu, Seref
    Mete, Burak
    Gemci, Fahriye
    Ibrikci, Turgay
    Paydas, Semra
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [7] Development of an artificial intelligence model to predict survival at specific time intervals for lung cancer patients.
    Agrawal, Smita
    Vaidya, Vivek
    Chandrashekaraiah, Prajwal
    Kulkarni, Hemant
    Chen, Li
    Rudeen, Karl
    Narayanan, Babu
    Inbar, Orr
    Hyde, Brigham
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [8] Cumulative prevalence of anemia in early-stage breast cancer (ESBC) patients.
    Lawless, GD
    Ford, JM
    BLOOD, 2000, 96 (11) : 390B - 390B
  • [9] The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer
    Zeng, Lixuan
    Liu, Lei
    Chen, Dongxin
    Lu, Henghui
    Xue, Yang
    Bi, Hongjie
    Yang, Weiwei
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] Metastatic presentations of previously treated early stage breast cancer patients.
    Itani, Najla
    Phadke, Sneha Deepak
    Grogan, Nicole
    Mott, Sarah L.
    JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)