Computation of Feasible Parametric Regions for Lyapunov Functions

被引:0
|
作者
Tong, Jiancheng [1 ]
Bajcinca, Naim [2 ]
机构
[1] Univ Kaiserslautern, Kaiserslautern, Germany
[2] Univ Kaiserslautern, Fac Mech & Proc Engn, Gottlieb Daimler Str 42, D-67663 Kaiserslautern, Germany
关键词
DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A computational approach of feasible regions for parameter-dependent Lyapunov functions for linear systems based on real-root-classification (RRC) is proposed in this paper. We refer to such Lyapunov functions as feasible if there exists a parameter set that guarantees the existence of a Lyapunov function. In this sense, the stability of parameter-dependent linear ordinary differential equations (ODEs) and differential algebraic equations (DAEs) is considered. To this end, the existence condition of Lyapunov functions is given in form of an algebraic condition by means of a quantifier elimination (QE) formulation. We apply RRC to solve the QE problem to obtain algebraic necessary and sufficient existence conditions. Several numerical examples demonstrate that this approach produces non-conservative stability regions in the parameter space.
引用
收藏
页码:2453 / 2458
页数:6
相关论文
共 50 条
  • [1] Computation of Feasible Parametric Regions for Common Quadratic Lyapunov Functions
    Tong, Jiancheng
    Bajcinca, Naim
    [J]. 2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 807 - 812
  • [2] Computation and Verification of Lyapunov Functions
    Giesl, Peter
    Hafstein, Sigurdur
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (04): : 1663 - 1698
  • [3] On the computation of piecewise quadratic Lyapunov functions
    Johansson, M
    Rantzer, A
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3515 - 3520
  • [4] Distributed Computation of Common Lyapunov Functions
    Zeng, Xiong
    Zeng, Xianlin
    Hong, Yiguang
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2418 - 2423
  • [5] On the Computation of Lyapunov Functions for Interconnected Systems
    Sloth, Christoffer
    [J]. 2016 IEEE CONFERENCE ON COMPUTER AIDED CONTROL SYSTEM DESIGN (CACSD), 2016, : 850 - 855
  • [6] EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS
    Goullet, Arnaud
    Harker, Shaun
    Mischaikow, Konstantin
    Kalies, William D.
    Kasti, Dinesh
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2419 - 2451
  • [7] Linear time computation of feasible regions for robust compensators
    Fadali, MS
    LaForge, LE
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (09) : 819 - 856
  • [8] A METHOD FOR CONSTRUCTION OF STABILITY REGIONS BY LYAPUNOV FUNCTIONS
    KAMENETSKIY, VA
    [J]. SYSTEMS & CONTROL LETTERS, 1995, 26 (02) : 147 - 151
  • [9] LYAPUNOV FUNCTIONS CONSTRUCTION FOR ESTIMATING REGIONS OF ATTRACTION
    KAMENETSKII, VA
    [J]. DOKLADY AKADEMII NAUK, 1995, 340 (03) : 305 - 307
  • [10] A semi-algebraic approach for the computation of Lyapunov functions
    She, Zhikun
    Xia, Bican
    Xiao, Rong
    [J]. PROCEEDINGS OF THE SECOND IASTED INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2006, : 7 - +