Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries

被引:30
|
作者
Xia, Yang [1 ]
Li, Jiaojiao [1 ]
Wang, Hongjie [2 ]
Ye, Zhangjun [2 ]
Zhou, Xiaozheng [2 ]
Huang, Hui [1 ]
Gan, Yongping [1 ]
Liang, Chu [1 ]
Zhang, Jun [1 ]
Zhang, Wenkui [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Godsend Power Technol Co Ltd, Hangzhou 311245, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Poly(vinylidene fluoride); SiO2; Separator; Conductivity; Lithium-ion battery; COMPOSITE POLYMER ELECTROLYTE; HIGH-SAFETY; LI-S; SEPARATOR; CATHODE; HFP; LINI0.8CO0.1MN0.1O2; TEMPERATURE;
D O I
10.1007/s10008-018-4161-2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, a series of rationally designed hybrid membranes composed of poly(vinylidene fluoride) (PVDF) as polymer matrix and silica nanoparticles (SiO2) as inorganic fillers are prepared by combining slurry coating method and phase inversion method. The effects of the added SiO2 nanoparticles on the porosity, electrolyte wettability, thermal stability, and ionic conductivity of PVDF/SiO2 hybrid membranes are investigated systematically. Compared to the commercial polypropylene (PP) membrane, PVDF/SiO2 hybrid membranes present enhanced physical and electrochemical performance. Particularly, the incorporation of 5wt.% SiO2 to PVDF polymer matrix (PVDF5 hybrid membrane) shows the highest ionic conductivity of 1x10(-3)Scm(-1) at 25 degrees C among all the samples. The electrochemical tests demonstrate that the LiNi0.8Co0.1Mn0.1O2/Li coin cell assembled with PVDF5 hybrid membrane exhibits high reversible discharge capacity (179mAhg(-1) at 0.05 C), excellent cyclic stability (169mAhg(-1) after 100cycles at 0.1 C), and superior rate performance, which are much better than other counterparts and PP separator. Moreover, as for the large capacity battery application, 1.1Ah LiNi0.8Co0.1Mn0.1O2/graphite pouch cell with PVDF5 hybrid membrane can deliver a high discharge capacity of 992mAh and good Coulombic efficiency of 99.5%. Evidently, the optimized PVDF/SiO2 hybrid membrane will be a very promising alternative to the commercial PP separator for advanced lithium-ion batteries.
引用
收藏
页码:519 / 527
页数:9
相关论文
共 50 条
  • [1] Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries
    Yang Xia
    Jiaojiao Li
    Hongjie Wang
    Zhangjun Ye
    Xiaozheng Zhou
    Hui Huang
    Yongping Gan
    Chu Liang
    Jun Zhang
    Wenkui Zhang
    Journal of Solid State Electrochemistry, 2019, 23 : 519 - 527
  • [2] Polyvinyl Butyral/SiO2 Nanoparticles Composite Coating on Poly(vinylidene fluoride) Separators for Lithium-Ion Batteries
    Ren, Yijin
    Zhang, Jun
    Yang, Yaojun
    Liu, Fan
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (02): : 194 - 205
  • [3] Poly(vinylidene fluoride)/SiO2 composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties
    Ma, Yuan
    Hu, Junping
    Wang, Zhitao
    Zhu, Youqi
    Ma, Xilan
    Cao, Chuanbao
    JOURNAL OF POWER SOURCES, 2020, 451
  • [4] Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries
    Zhang, Feng
    Ma, Xilan
    Cao, Chuanbao
    Li, Jili
    Zhu, Youqi
    JOURNAL OF POWER SOURCES, 2014, 251 : 423 - 431
  • [5] Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries
    Kang, Weimin
    Ma, Xiaomin
    Zhao, Huihui
    Ju, Jingge
    Zhao, Yixia
    Yan, Jing
    Cheng, Bowen
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (10) : 2791 - 2803
  • [6] Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries
    Weimin Kang
    Xiaomin Ma
    Huihui Zhao
    Jingge Ju
    Yixia Zhao
    Jing Yan
    Bowen Cheng
    Journal of Solid State Electrochemistry, 2016, 20 : 2791 - 2803
  • [7] Cellulose/Poly(vinylidene fluoride hexafluoropropylene) composite membrane with titania nanoparticles for lithium-ion batteries
    Asghar, Muhammad Rehman
    Anwar, Muhammad Tuoqeer
    Xia, Guofeng
    Zhang, Junliang
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 252
  • [8] An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries
    Jiuqing Liu
    Cheng Wang
    Xiufeng Wu
    Fangfang Zhu
    Meng Liu
    Yang Xi
    Journal of Solid State Electrochemistry, 2019, 23 : 277 - 284
  • [9] Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries
    Jeong, Hyun-Seok
    Lee, Sang-Young
    JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6716 - 6722
  • [10] An enhanced poly(vinylidene fluoride) matrix separator with TEOS for good performance lithium-ion batteries
    Liu, Jiuqing
    Wang, Cheng
    Wu, Xiufeng
    Zhu, Fangfang
    Liu, Meng
    Xi, Yang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (01) : 277 - 284