Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution

被引:403
|
作者
Wang, Hou [1 ,2 ]
Yuan, Xingzhong [1 ,2 ]
Wu, Yan [3 ]
Huang, Huajun [1 ,2 ]
Zeng, Guangming [1 ,2 ]
Liu, Yan [1 ,2 ]
Wang, Xueli [1 ,2 ]
Lin, Ningbo [1 ,2 ]
Qi, Yu [4 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China
[3] S China Univ Technol, Coll Environm & Energy, Guangzhou 510006, Guangdong, Peoples R China
[4] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
中国国家自然科学基金;
关键词
Graphene oxide; Adsorption; Kinetics; Zinc; HEAVY-METALS; WASTE-WATER; ZN2+; NANOMATERIALS; ADSORBENTS; NANOSHEETS; ZINC(II); CU(II); IONS;
D O I
10.1016/j.apsusc.2013.04.133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, graphene oxide (GO) was synthesized via modified Hummers' method, and characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS). The adsorption of Zn(II) on GO as a function of pH, adsorbent dosage, foreign ions, contact time, and temperature was investigated using batch technique. Results showed that the suitable pH for Zn(II) removal was about 7.0, and the optimal dosage was 2 mg. The adsorption of Zn(II) onto GO increased sharply within 20 min and obtained equilibrium gradually. Meanwhile, foreign ion and temperature also affected the adsorption performance of GO. The adsorption process was found to be well described by the pseudo-second-order rate model. Equilibrium studies indicated that the data of Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacity for Zn(II) was up to 246 mg/g with a Langmuir adsorption equilibrium constant of 5.7 L/g at 20 degrees C. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Zn(II) sorption on GO was an exothermic and spontaneous process in nature. The possibility of Zn(II) recovery was investigated and the result revealed that the maximum Zn(II) recovery yield was achieved with hydrochloric acid. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:432 / 440
页数:9
相关论文
共 50 条
  • [1] Comments on "Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution"
    Ho, Yuh-Shan
    APPLIED SURFACE SCIENCE, 2014, 301 : 584 - 584
  • [2] Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution (vol 279, pg 432, 2013)
    Wang, Hou
    Yuan, Xingzhong
    Wu, Yan
    Huang, Huajun
    Zeng, Guangming
    Liu, Yan
    Wang, Xueli
    Lin, Ningbo
    Qi, Yu
    APPLIED SURFACE SCIENCE, 2014, 301 : 585 - 585
  • [3] Proficiency of Graphene Oxide in Adsorption of Zn(II) Ions from Aqueous Solution
    Udoka, N. A.
    Kenechukwu, E. C.
    PHYSICAL CHEMISTRY RESEARCH, 2019, 7 (02): : 295 - 307
  • [4] Adsorption characteristics of graphene oxide in the removal of Cu(II) from aqueous solutions
    Yi, In-Geol
    Kang, Jin-Kyu
    Kim, Jae-Hyun
    Lee, Seung-Chan
    Sim, Eun-Hye
    Park, Jeong-Ann
    Kim, Song-Bae
    DESALINATION AND WATER TREATMENT, 2017, 72 : 308 - 317
  • [5] Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide
    Gao, Yuan
    Li, Yan
    Zhang, Liang
    Huang, Hui
    Hu, Junjie
    Shah, Syed Mazhar
    Su, Xingguang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 368 : 540 - 546
  • [6] Pb(II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite
    Ahmad, Siti Zu Nurain
    Salleh, Wan Norharyati Wan
    Yusof, Norhaniza
    Mohd Yusop, Mohd Zamri
    Hamdan, Rafidah
    Awang, Nor Asikin
    Ismail, Nor Hafiza
    Rosman, Norafiqah
    Sazali, Norazlianie
    Ismail, Ahmad Fauzi
    CHEMICAL ENGINEERING COMMUNICATIONS, 2021, 208 (05) : 646 - 660
  • [7] REMOVAL OF Zn(II) IONS FROM AQUEOUS SOLUTION BY ADSORPTION ON MUSTARD HUSKS
    Bulgariu, Dumitru
    Juravle, Doru Toader
    Bulgariu, Laura
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2015, 60 (02): : 147 - 160
  • [8] Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash
    Weng, CH
    Huang, CP
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2004, 247 (1-3) : 137 - 143
  • [9] Removal of mercury(II) from aqueous solution by partially reduced graphene oxide
    Talia Tene
    Fabian Arias Arias
    Marco Guevara
    Adriana Nuñez
    Luis Villamagua
    Carlos Tapia
    Michele Pisarra
    F. Javier Torres
    Lorenzo S. Caputi
    Cristian Vacacela Gomez
    Scientific Reports, 12
  • [10] Removal of mercury(II) from aqueous solution by partially reduced graphene oxide
    Tene, Talia
    Arias Arias, Fabian
    Guevara, Marco
    Nunez, Adriana
    Villamagua, Luis
    Tapia, Carlos
    Pisarra, Michele
    Torres, F. Javier
    Caputi, Lorenzo S.
    Gomez, Cristian Vacacela
    SCIENTIFIC REPORTS, 2022, 12 (01)