A New Method for Choosing the Regularization Parameter of ROF Total Variation Image Denoising

被引:1
|
作者
Zhang, Lan [1 ]
Xu, Lei [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian, Shaanxi, Peoples R China
[2] Xian Aeronaut Ploytech Inst, Dept Aeronaut Mat, Xian, Shaanxi, Peoples R China
关键词
Image denoising; Regularization parameter; Quantum particle swarm optimization;
D O I
10.1109/IHMSC.2016.225
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The total variation regularization denoising is a widely used denoising method. But the denoising effect of this method depends on the choice of the regularization parameter. In this paper, estimate parameter of ROF total variation denoising based on quantum particle swarm optimization (QPSO) algorithm is proposed. At per iteration step, we also fit a model about the optimal parameter and standard deviation of Gaussian noise. The experimental results show that the proposed method can obtain favourable denoising result and has a good performance in PSNR.
引用
收藏
页码:373 / 377
页数:5
相关论文
共 50 条
  • [1] A new nonlocal total variation regularization algorithm for image denoising
    Liu, Xinwu
    Huang, Lihong
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 97 : 224 - 233
  • [2] A new local and nonlocal total variation regularization model for image denoising
    Chen, Mingju
    Zhang, Hua
    Lin, Guojun
    Han, Qiang
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S7611 - S7627
  • [3] A new local and nonlocal total variation regularization model for image denoising
    Mingju Chen
    Hua Zhang
    Guojun Lin
    Qiang Han
    [J]. Cluster Computing, 2019, 22 : 7611 - 7627
  • [4] SAR IMAGE DENOISING USING TOTAL VARIATION BASED REGULARIZATION WITH SURE-BASED OPTIMIZATION OF THE REGULARIZATION PARAMETER
    Palsson, Frosti
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Benediktsson, Jon A.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 2160 - 2163
  • [5] Spatially dependent regularization parameter selection for total generalized variation-based image denoising
    Tian-Hui Ma
    Ting-Zhu Huang
    Xi-Le Zhao
    [J]. Computational and Applied Mathematics, 2018, 37 : 277 - 296
  • [6] Spatially dependent regularization parameter selection for total generalized variation-based image denoising
    Ma, Tian-Hui
    Huang, Ting-Zhu
    Zhao, Xi-Le
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 277 - 296
  • [7] New Regularization Models for Image Denoising with a Spatially Dependent Regularization Parameter
    Ma, Tian-Hui
    Huang, Ting-Zhu
    Zhao, Xi-Le
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] Fractional-order iterative regularization method for total variation based image denoising
    Zhang, Jun
    Wei, Zhihui
    Xiao, Liang
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (04)
  • [9] Total Variation Regularization for Image Denoising, III. Examples
    Allard, William K.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02): : 532 - 568
  • [10] Total Variation Regularization for Image Denoising, II. Examples
    Allard, William K.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2008, 1 (04): : 400 - 417