Permutations with extremal number of fixed points

被引:8
|
作者
Han, Guo-Niu [1 ,2 ,3 ]
Xin, Guoce [1 ]
机构
[1] Nankai Univ, LPMC TJKLC, Ctr Combinator, Tianjin 300071, Peoples R China
[2] Univ Strasbourg, UMR 7501, IRMA, F-67084 Strasbourg, France
[3] CNRS, F-67084 Strasbourg, France
基金
美国国家科学基金会;
关键词
Alternating permutations; Derangements; Desarrangements; Descent set; MAHONIAN CALCULUS;
D O I
10.1016/j.jcta.2008.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Stanley's work on alternating permutations with extremal number of fixed points in two directions: first, alternating permutations are replaced by permutations with a prescribed descent set; second, instead of simply counting permutations we study their generating polynomials by number of excedarices. Several techniques are Used: Desarmenien's desarrangement combinatorics. Gessel's hook-factorization and the analytical properties of two new permutation statistics "DEZ" and "lec." Explicit formulas for the maximal case are derived by using symmetric function tools. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 50 条
  • [1] Permutations by number of fixed points and anti-excedances
    Rakotondrajao, Fanja
    AFRIKA MATEMATIKA, 2012, 23 (01) : 121 - 133
  • [2] On fixed points of permutations
    Persi Diaconis
    Jason Fulman
    Robert Guralnick
    Journal of Algebraic Combinatorics, 2008, 28
  • [3] DESCENT CLASSES OF PERMUTATIONS WITH A GIVEN NUMBER OF FIXED-POINTS
    DESARMENIEN, J
    WACHS, ML
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (02) : 311 - 328
  • [4] On fixed points of permutations
    Diaconis, Persi
    Fulman, Jason
    Guralnick, Robert
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) : 189 - 218
  • [5] On fixed points of permutations
    Diaconis, Persi
    Fulman, Jason
    Guralnick, Robert
    Journal of Algebraic Combinatorics, 2008, 28 (01): : 189 - 218
  • [6] STRONG FIXED-POINTS OF PERMUTATIONS
    CALLAN, D
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (08): : 800 - 801
  • [7] PERMUTATIONS WITH F FIXED-POINTS
    GESSEL, I
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (05): : 335 - 335
  • [8] The largest and the smallest fixed points of permutations
    Deutsch, Emeric
    Elizalde, Sergi
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1404 - 1409
  • [9] Fixed points and excedances in restricted permutations
    Elizalde, Sergi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 18 (02):
  • [10] PERMUTATIONS WITH UNIQUE FIXED AND REFLECTED POINTS
    SIMPSON, T
    ARS COMBINATORIA, 1995, 39 : 97 - 108