FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION

被引:32
|
作者
Cazenave, Thierry [1 ,2 ]
Dickstein, Flavio [3 ]
Weissler, Fred B. [4 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil
[4] Univ Paris 13, CNRS UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
complex Ginzburg-Landau equation; finite-time blowup; energy; variance; CAUCHY-PROBLEM; PARABOLIC EQUATIONS; MONOTONICITY METHOD; LOCAL SPACES; BLOWING-UP; NONEXISTENCE; EXISTENCE; THEOREMS;
D O I
10.1137/120878690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that negative energy solutions of the complex Ginzburg-Landau equation e-(i theta)u(t) = Delta u + vertical bar u vertical bar(alpha)u blow up in finite time, where alpha > 0 and -pi/2 < theta < pi/2. For a fixed initial value u(0), we obtain estimates of the blow-up time T-max(theta) as theta -> +/-pi/2. It turns out that T-max(theta) stays bounded (respectively, goes to infinity) as theta -> +/-pi/2 in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global).
引用
收藏
页码:244 / 266
页数:23
相关论文
共 50 条
  • [1] Finite-time blowup for a complex Ginzburg-Landau equation with linear driving
    Cazenave, Thierry
    Dias, Joao-Paulo
    Figueira, Mario
    JOURNAL OF EVOLUTION EQUATIONS, 2014, 14 (02) : 403 - 415
  • [2] Finite-time Blowup for some Nonlinear Complex Ginzburg-Landau Equations
    Cazenave, Thierry
    Snoussi, Seifeddine
    PARTIAL DIFFERENTIAL EQUATIONS ARISING FROM PHYSICS AND GEOMETRY: A VOLUME IN MEMORY OF ABBAS BAHRI, 2019, 450 : 172 - 214
  • [3] Finite-time blowup for a complex Ginzburg–Landau equation with linear driving
    Thierry Cazenave
    João-Paulo Dias
    Mário Figueira
    Journal of Evolution Equations, 2014, 14 : 403 - 415
  • [4] Blowup for a complex Ginzburg-Landau equation focusing on the parabolicity
    Tomidokoro, Takuya
    Yokota, Tomomi
    ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 : 375 - 388
  • [5] Construction of Blowup Solutions for the Complex Ginzburg-Landau Equation with Critical Parameters
    Duong, Giao Ky
    Nouaili, Nejla
    Zaag, Hatem
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 285 (1411) : 1 - 91
  • [6] Complex Ginzburg-Landau Equation with Generalized Finite Differences
    Salete, Eduardo
    Vargas, Antonio M.
    Garcia, Angel
    Negreanu, Mihaela
    Benito, Juan J.
    Urena, Francisco
    MATHEMATICS, 2020, 8 (12) : 1 - 13
  • [7] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446
  • [8] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [9] The complex Ginzburg-Landau equation: an introduction
    Garcia-Morales, Vladimir
    Krischer, Katharina
    CONTEMPORARY PHYSICS, 2012, 53 (02) : 79 - 95
  • [10] A COMPLEX GINZBURG-LANDAU EQUATION IN MAGNETISM
    ZUBRZYCKI, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 150 (02) : L143 - L145