Square-Root Sigma-Point Information Filtering

被引:26
|
作者
Liu, Guoliang [1 ]
Woergoetter, Florentin [1 ]
Markelic, Irene [1 ]
机构
[1] Univ Gottingen, Bernstein Ctr Computat Neurosci, Phys Inst Biophys 3, D-37077 Gottingen, Germany
关键词
Central difference information filter; multiple sensor fusion; nonlinear estimation; sigma-point filter; square-root filter; unscented information filter;
D O I
10.1109/TAC.2012.2193708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The sigma-point information filters employ a number of deterministic sigma-points to calculate the mean and covariance of a random variable which undergoes a nonlinear transformation. These sigma-points can be generated by the unscented transform or Stirling's interpolation, which corresponds to the unscented information filter (UIF) and the central difference information filter (CDIF) respectively. In this technical note, we develop the square-root extensions of UIF and CDIF, which have better numerical properties than the original versions, e.g., improved numerical accuracy, double order precision and preservation of symmetry. We also show that the square-root unscented information filter (SRUIF) might lose the positive-definiteness due to the negative Cholesky update, whereas the square-root central difference information filter (SRCDIF) has only positive Cholesky update. Therefore, the SRCDIF is preferable to the SRUIF concerning the numerical stability.
引用
收藏
页码:2945 / 2948
页数:5
相关论文
共 50 条
  • [1] Square-root sigma-point Kalman filtering for spacecraft relative navigation
    Tang, Xiaojun
    Yan, Jie
    Zhong, Dudu
    [J]. ACTA ASTRONAUTICA, 2010, 66 (5-6) : 704 - 713
  • [2] Square-Root Sigma-Point Information Consensus Filters for Distributed Nonlinear Estimation
    Liu, Guoliang
    Tian, Guohui
    [J]. SENSORS, 2017, 17 (04)
  • [3] Joseph covariance formula adaptation to Square-Root Sigma-Point Kalman filters
    Francesco De Vivo
    Alberto Brandl
    Manuela Battipede
    Piero Gili
    [J]. Nonlinear Dynamics, 2017, 88 : 1969 - 1986
  • [4] Joseph covariance formula adaptation to Square-Root Sigma-Point Kalman filters
    De Vivo, Francesco
    Brandl, Alberto
    Battipede, Manuela
    Gili, Piero
    [J]. NONLINEAR DYNAMICS, 2017, 88 (03) : 1969 - 1986
  • [5] Square-Root Sigma-Point Filtering Approach to State Estimation for Wind Turbine Generators in Interconnected Energy Systems
    Yu, Samson S.
    Fan, Xinqi
    Chau, Tat Kei
    Hieu Trinh
    Nahavandi, Saeid
    [J]. IEEE SYSTEMS JOURNAL, 2021, 15 (02): : 1557 - 1566
  • [6] APPLICATION OF DISCRETE SQUARE-ROOT INFORMATION FILTERING
    BIERMAN, GJ
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1974, 20 (03) : 465 - 477
  • [7] Sigma-point multiple particle filtering
    Ubeda-Medina, Luis
    Garcia-Fernandez, Angel F.
    Grajal, Jesus
    [J]. SIGNAL PROCESSING, 2019, 160 : 271 - 283
  • [8] SQUARE-ROOT INFORMATION FILTERING AND SMOOTHING FOR PRECISION ORBIT DETERMINATION
    BIERMAN, GJ
    [J]. MATHEMATICAL PROGRAMMING STUDY, 1982, 18 (MAY): : 61 - 75
  • [9] Square-Root Unscented Filtering and Smoothing
    Rutten, Mark G.
    [J]. 2013 IEEE EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SENSORS, SENSOR NETWORKS AND INFORMATION PROCESSING, 2013, : 294 - 299
  • [10] Square-root quadrature Kalman filtering
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) : 2589 - 2593