From cluster ensemble to structure ensemble

被引:31
|
作者
Yu, Zhiwen [1 ,2 ]
You, Jane [2 ]
Wong, Hau-San [3 ]
Han, Guoqiang [1 ]
机构
[1] S China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cluster ensemble; Structure ensemble; CLASSIFIER ENSEMBLES; MICROARRAY DATA; RELIABILITY; STABILITY; CONSENSUS; CANCER;
D O I
10.1016/j.ins.2012.02.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the problem of integrating multiple structures which are extracted from different sets of data points into a single unified structure. We first propose a new generalized concept called structure ensemble for the fusion of multiple structures. Unlike traditional cluster ensemble approaches the main objective of which is to align individual labels obtained from different clustering solutions, the structure ensemble approach focuses on how to unify the structures obtained from different data sources. Based on this framework, a new structure ensemble approach called the probabilistic bagging based structure ensemble approach (BSEA) is designed, which integrates the bagging technique, the force based self-organizing map (FBSOM) and the normalized cut algorithm into the proposed framework. BSEA views structures obtained from different datasets generated by the bagging technique as nodes in a graph, and adopts graph theory to find the most representative structure. In addition, the force based self-organizing map (FBSOM), which is a generalized form of SOM, is proposed to serve as the basic clustering algorithm in the structure ensemble framework. Finally, a new external index called correlation index (CI), which considers the correlation relationship of both the similarity and dissimilarity between the predicted solution and the true solution, is proposed to evaluate the performance of BSEA. The experiments show that (i) The performance of BSEA outperforms most of the state-of-the-art clustering approaches, and (ii) BSEA performs well on datasets from the UCI repository and real cancer gene expression profiles. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 99
页数:19
相关论文
共 50 条
  • [1] Probabilistic cluster structure ensemble
    Yu, Zhiwen
    Li, Le
    Wong, Hau-San
    You, Jane
    Han, Guoqiang
    Gao, Yunjun
    Yu, Guoxian
    INFORMATION SCIENCES, 2014, 267 : 16 - 34
  • [2] From Ensemble Clustering to Subspace Clustering: Cluster Structure Encoding
    Tao, Zhiqiang
    Li, Jun
    Fu, Huazhu
    Kong, Yu
    Fu, Yun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (05) : 2670 - 2681
  • [3] Theory for the atomic shell structure of the cluster magnetic moment and magnetoresistance of a cluster ensemble
    Jensen, P. J.
    Bennemann, K. H.
    Zeitschrift fuer Physik D: Atoms, Molecules and Clusters, 1995, 35 (04):
  • [4] Weighted Spectral Cluster Ensemble
    Yousefnezhad, Muhammad
    Zhang, Daoqiang
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 549 - 558
  • [5] Adaptive Cluster Ensemble Selection
    Azimi, Javad
    Fern, Xiaoli
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 992 - 997
  • [6] Knowledge based Cluster Ensemble
    Yu, Zhiwen
    Deng, Zhongkai
    Wong, Hau-San
    Wang, Xing
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 589 - 594
  • [7] Wisdom of Crowds cluster ensemble
    Alizadeh, Hosein
    Yousefnezhad, Muhammad
    Bidgoli, Behrouz Minaei
    INTELLIGENT DATA ANALYSIS, 2015, 19 (03) : 485 - 503
  • [8] Cluster ensemble Kalman filter
    Smith, Keston W.
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2007, 59 (05) : 749 - 757
  • [9] Cluster Expansion in the Canonical Ensemble
    Pulvirenti, Elena
    Tsagkarogiannis, Dimitrios
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (02) : 289 - 306
  • [10] Cluster ensemble selection with constraints
    Yang, Fan
    Li, Tao
    Zhou, Qifeng
    Xiao, Han
    NEUROCOMPUTING, 2017, 235 : 59 - 70