Direct 3D-printing of phosphate glass by fused deposition modeling

被引:41
|
作者
Zaki, Reda Mohammed [1 ]
Strutynski, Clement [1 ]
Kaser, Simon [1 ,2 ]
Bernard, Dominique [1 ]
Hauss, Gregory [3 ]
Faessel, Matthieu [4 ]
Sabatier, Jocelyn [5 ]
Canioni, Lionel [6 ]
Messaddeq, Younes [2 ]
Danto, Sylvain [1 ]
Cardinal, Thierry [1 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB,UMR 5026, F-33600 Pessac, France
[2] Univ Laval, Ctr Opt Photon & Laser COPL, Quebec City, PQ, Canada
[3] Univ Bordeaux, CNRS, UMS PLACAMAT 3626, F-33600 Pessac, France
[4] Bordeaux Univ, TechnoShop Coh Bit Platform, Bordeaux Inst Technol, 15 Rue Naudet, F-33750 Gradignan, France
[5] Bordeaux Univ, IMS Lab, UMR 5218, CNRS, 351 Cours Liberat, F-33405 Talence, France
[6] Bordeaux Univ, CNRS, CEA, CELIA,UMR 5107, F-33405 Talence, France
关键词
Phosphate glass; Oxide glass; 3D-printing; Fused deposition modeling; Additive manufacturing; SAMARIUM;
D O I
10.1016/j.matdes.2020.108957
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing of oxide glass enables on-demand, low-cost manufacturing of complex optical components for numerous applications, opening new opportunities to explore functionalities inaccessible otherwise. Here, we report a straightforward extrusion-based 3D-printing approach, deploying the fused deposition modeling (FDM) process, to produce optically transparent phosphate glasses with complex geometries and preserved structural and photoluminescence properties. Using a customized entry-level FDM desktop printer with a layer resolution of 100 mu m, highly dense and transparent europium-doped phosphate glass structures can be fabricated from glass filaments pulled using a fiber-drawing tower from the parent glass preform. Combined with the suggested strategies for performance and quality improvement, professional-grade FDM printers can offer better layer resolutions. This direct approach for 3D-printing phosphate glass may open up new horizons not only for developing cutting-edge optical components but also for promoting new biomedical solutions upon making use of alternative biocompatible phosphate compositions. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Direct 3D-printing of phosphate glass by fused deposition modeling (vol 194, 108957, 2020)
    Zaki, Reda Mohammed
    Strutynski, Clement
    Kaser, Simon
    Bernard, Dominique
    Hauss, Gregory
    Faessel, Matthieu
    Sabatier, Jocelyn
    Canioni, Lionel
    Messaddeq, Younes
    Danto, Sylvain
    Cardinal, Thierry
    MATERIALS & DESIGN, 2020, 196
  • [2] Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling
    Palmero, Ester M.
    Casaleiz, Daniel
    de Vicente, Javier
    Hernandez-Vicen, Juan
    Lopez-Vidal, Silvia
    Ramiro, Emilio
    Bollero, Alberto
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 124
  • [3] The Fused Deposition Modeling 3D Printing
    Yan, Longwei
    Sun, Huichao
    Qu, Xingtian
    Zhou, Wei
    Proceedings of the 2016 International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE), 2016, 51 : 201 - 203
  • [4] 3D-Printing of a Lemon Battery via Fused Deposition Modelling and Electrodeposition
    Dijkshoorn, Alexander
    Sculac, Luka
    Sanders, Remco
    Olthuis, Wouter
    Stramigioli, Stefano
    Krijnen, Gijs
    2020 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (IEEE FLEPS 2020), 2020,
  • [5] Simplification of fused deposition modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage form production
    Fanous, Marina
    Gold, Sarah
    Muller, Silvain
    Hirsch, Stefan
    Ogorka, Joerg
    Imanidis, Georgios
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 578
  • [6] Poly(butylene succinate) filaments for fused deposition modelling (FDM) 3D-printing
    Chen, Yong
    Xu, Jielin
    Chen, Ye
    Wang, Chaosheng
    Wang, Huaping
    Wu, Jing
    POLYMER CHEMISTRY, 2025, 16 (09) : 1072 - 1084
  • [7] 3D-Printing Nanocellulose-Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling
    Giubilini, Alberto
    Siqueira, Gilberto
    Clemens, Frank J.
    Sciancalepore, Corrado
    Messori, Massimo
    Nystrom, Gustav
    Bondioli, Federica
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (27): : 10292 - 10302
  • [8] Additive manufacturing of architectural models using Fused Layer Modeling and 3D-printing
    Junk, S.
    Cote, S.
    HIGH VALUE MANUFACTURING: ADVANCED RESEARCH IN VIRTUAL AND RAPID PROTOTYPING, 2014, : 623 - 628
  • [9] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Polymer Science, Series A, 2021, 63 : 652 - 656
  • [10] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    POLYMER SCIENCE SERIES A, 2021, 63 (06) : 652 - 656