Entropy production in classical Yang-Mills theory from glasma initial conditions

被引:16
|
作者
Iida, Hideaki [1 ]
Kunihiro, Teiji [1 ]
Mueller, Berndt [2 ,3 ]
Ohnishi, Akira [4 ]
Schaefer, Andreas [5 ]
Takahashi, Toru T. [6 ]
机构
[1] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Duke Univ, CTMS, Durham, NC 27708 USA
[4] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[5] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[6] Gumma Natl Coll Technol, Gunma 3718530, Japan
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 09期
基金
日本学术振兴会;
关键词
TIME; PLASMA; CHAOS; FIELD;
D O I
10.1103/PhysRevD.88.094006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the thermalization process in classical Yang-Mills field theory starting from noisy glasmalike initial conditions by investigating the initial-value sensitivity of trajectories. Kunihiro et al. linked entropy generation to the Kolmogorov-Sinai entropy, which gives the entropy production rate in classical chaotic systems, calculated numerically for classical Yang-Mills fields starting from purely random initial field configurations. In contrast, we study here glasmalike initial conditions. For small random fluctuations, we obtain qualitatively similar results, while no entropy increase is observed when such fluctuations are absent. We analyze the intermediate-time Lyapunov spectrum for several time windows and calculate the Kolmogorov-Sinai entropy. We find a large number of positive Lyapunov exponents at the early stages of time evolution. Also, for later times, their number is a sizeable fraction of the total number of degrees of freedom. The spectrum of positive Lyapunov exponents at first changes rapidly but then stabilizes, indicating that the dynamics of the gauge fields approaches a steady state. Thus, we conclude that also for glasmalike initial conditions, a significant amount of entropy is produced by classical gluon field dynamics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Classical Yang-Mills theory
    Boozer, A. D.
    AMERICAN JOURNAL OF PHYSICS, 2011, 79 (09) : 925 - 931
  • [2] INTERPRETATION OF CLASSICAL YANG-MILLS THEORY
    WITTEN, E
    PHYSICS LETTERS B, 1978, 77 (4-5) : 394 - 392
  • [3] Geometric foundations of classical Yang-Mills theory
    Catren, Gabriel
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2008, 39 (03): : 511 - 531
  • [4] Ultraviolet cascade in classical Yang-Mills theory
    Kurkela, Aleksi
    Moore, Guy D.
    PHYSICAL REVIEW D, 2012, 86 (05):
  • [5] SCREENING SOLUTIONS TO CLASSICAL YANG-MILLS THEORY
    SIKIVIE, P
    WEISS, N
    PHYSICAL REVIEW LETTERS, 1978, 40 (22) : 1411 - 1413
  • [6] Equations of the Yang-Mills theory of classical electrodynamics
    Anastasovski, PK
    Bearden, TE
    Ciubotariu, C
    Coffey, WT
    Crowell, LB
    Evans, GJ
    Evans, MW
    Flower, R
    Jeffers, S
    Labounsky, A
    Lehnert, B
    Mészáros, M
    Molnár, PR
    Vigier, JP
    Roy, S
    OPTIK, 2000, 111 (02): : 53 - 56
  • [7] Equations of the Yang-Mills theory of classical electrodynamics
    Anastasovski, P.K.
    Bearden, T.E.
    Ciubotariu, C.
    Coffey, W.T.
    Crowell, L.B.
    Evans, G.J.
    Evans, M.W.
    Flower, R.
    Jeffers, S.
    Labounsky, A.
    Lehnert, B.
    Mészáros, M.
    Molnár, P.R.
    Vigier, J.P.
    Roy, S.
    Optik (Jena), 2000, 111 (02): : 53 - 56
  • [8] The Boltzmann equation in classical Yang-Mills theory
    Mathieu, V.
    Mueller, A. H.
    Triantafyllopoulos, D. N.
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (05): : 1 - 15
  • [9] CONSERVED QUANTITIES IN CLASSICAL YANG-MILLS THEORY
    CHODOS, A
    PHYSICAL REVIEW D, 1979, 20 (04): : 915 - 920
  • [10] ELLIPTIC SOLUTIONS OF CLASSICAL YANG-MILLS THEORY
    CERVERO, J
    JACOBS, L
    NOHL, CR
    PHYSICS LETTERS B, 1977, 69 (03) : 351 - 354