Incremental Hierarchical Clustering of Stochastic Pattern-Based Symbolic Data

被引:1
|
作者
Xu, Xin [1 ]
Lu, Jiaheng [2 ]
Wang, Wei [3 ]
机构
[1] NRIEE, Sci & Technol Informat Syst Engn Lab, Nanjing, Jiangsu, Peoples R China
[2] Univ Helsinki, Dept Comp Sci, Helsinki, Finland
[3] Nanjing Univ, State Key Lab Novel Software & Technol, Nanjing, Jiangsu, Peoples R China
关键词
Symbolic data analysis; Stochastic pattern; Incremental learning; Hierarchical clustering; Emitter parameter analysis;
D O I
10.1007/978-3-319-31750-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classic data analysis techniques generally assume that variables have single values only. However, the data complexity during the age of big data has gone beyond the classic framework such that variable values probably take the form of a set of stochastic measurements instead. We refer to the above case as the stochastic pattern-based symbolic data where each measurement set is an instance of an underlying stochastic pattern. In such a case, non existing classic data analysis approaches, such as the crystal item or fuzzy region ones, could apply yet. For this reason, we put forward a novel Incremental Hierarchical Clustering algorithm for stochastic Pattern-based Symbolic Data (IHCPSD). IHCPSD is robust to overlapping and missing measurements and well adapted for incremental learning. Experiments on synthetic and application on real-life emitter parameter data have validated its effectiveness.
引用
收藏
页码:156 / 167
页数:12
相关论文
共 50 条
  • [1] GHIC: A hierarchical pattern-based clustering algorithm for grouping Web transactions
    Yang, YH
    Padmanabhan, B
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (09) : 1300 - 1304
  • [2] CLEOPATRA: Evolutionary pattern-based clustering of web usage data
    Zhao, Qiankun
    Bhowmick, Sourav S.
    Gruenwald, Le
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 323 - 333
  • [3] Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Zimek, Arthur
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2009, 3 (01)
  • [4] Pattern-based clustering and attribute analysis
    Gabriela Alexe
    Sorin Alexe
    Peter L. Hammer
    Soft Computing, 2006, 10 : 442 - 452
  • [5] Pattern-based clustering and attribute analysis
    Alexe, G
    Alexe, S
    Hammer, PL
    SOFT COMPUTING, 2006, 10 (05) : 442 - 452
  • [6] A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data
    Irpino, Antonio
    Verde, Rosanna
    DATA SCIENCE AND CLASSIFICATION, 2006, : 185 - +
  • [7] Dynamic incremental data summarization for hierarchical clustering
    Liu, Bing
    Shi, Yuliang
    Wang, Zhihui
    Wang, Wei
    Shi, Baile
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2006, 4016 : 410 - 421
  • [8] Pattern-based data compression
    Kuri, A
    Galaviz, J
    MICAI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 2972 : 1 - 10
  • [9] An online incremental learning pattern-based reasoning system
    Shen Furao
    Sudo, Akihito
    Hasegawa, Osamu
    NEURAL NETWORKS, 2010, 23 (01) : 135 - 143
  • [10] Pattern-based clustering problem based on fuzzy measures
    Gutierrez, I
    Barroso, M.
    Gomez, D.
    Castro, C.
    Espinola, R.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 412 - 420