Assessment of Some Methods for Short-Term Load Forecasting

被引:0
|
作者
Koponen, Pekka [1 ]
Mutanen, Antti [2 ]
Niska, Harri [3 ]
机构
[1] VTT Tech Res Ctr Finland, Espoo, Finland
[2] Tampere Univ Technol, Tampere, Finland
[3] Univ Eastern Finland, Kuopio, Finland
关键词
power demand; demand forecasting; load modeling; prediction algorithms; artificial neural networks;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate forecasting of loads is essential for smart grids and energy markets. This paper compares the performance of the following models in short-term load forecasting: 1) smart metering data based profile models, 2) a neural network (NN) model, and 3) a Kalman-filter based predictor with input nonlinearities and a physically based main structure. The comparison helps method selection for the development of hybrid models for forecasting the load control responses. According to the results all these three modeling approaches show much better performance than 4) the traditional load profiles and 5) a static outdoor temperature dependency model applied with a lag. The neural network model was the most accurate in the comparison, but the differences of the three methods developed were rather small and also other aspects and other methods must be considered and compared when selecting the method for a specific purpose.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] COMPARISON OF METHODS FOR SHORT-TERM LOAD FORECASTING
    DEISTLER, M
    FRAISSLER, W
    PETRITSCH, G
    SCHERRER, W
    ARCHIV FUR ELEKTROTECHNIK, 1988, 71 (06): : 389 - 397
  • [2] Short-Term Load Forecasting Methods: A Review
    Srivastava, A. K.
    Pandey, Ajay Shekhar
    Singh, Devender
    2016 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ELECTRONICS & SUSTAINABLE ENERGY SYSTEMS (ICETEESES), 2016, : 130 - 138
  • [3] A Comparison of Multiple Methods for Short-Term Load Forecasting
    Sun, Mingsui
    Ghorbani, Mahsa
    Chong, Edwin K. P.
    Suryanarayanan, Siddharth
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [4] Short-Term Load Forecasting With Exponentially Weighted Methods
    Taylor, James W.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 458 - 464
  • [5] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [6] Evaluating Feature Selection Methods for Short-term Load Forecasting
    Pirbazari, Aida Mehdipour
    Chakravorty, Antorweep
    Rong, Chunming
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2019, : 571 - 578
  • [7] Short-Term Electric Load Forecasting With Sparse Coding Methods
    Giamarelos, Nikolaos
    Zois, Elias N.
    Papadimitrakis, Myron
    Stogiannos, Marios
    Livanos, Nikolaos-Antonios I.
    Alexandridis, Alex
    IEEE ACCESS, 2021, 9 : 102847 - 102861
  • [8] Regularization methods for the short-term forecasting of the Italian electric load 
    Incremona, Alessandro
    De Nicolao, Giuseppe
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51
  • [9] Progress in Research on the Methods of Electricity Short-Term Load Forecasting
    Ye, Ning
    Liu, Yong
    Ma, Jiajun
    Wang, Yong
    POWER AND ENERGY ENGINEERING CONFERENCE 2010, 2010, : 558 - +
  • [10] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, 63 (04) : 614 - 624