Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem

被引:25
|
作者
Giordano, Matteo [1 ]
Nickl, Richard [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
inverse problems; Bayesian inference; Gaussian prior; frequentist consistency; NONLINEAR TIKHONOV REGULARIZATION; POSTERIOR CONTRACTION RATES; CONVERGENCE-RATES; IDENTIFICATION; MCMC; APPROXIMATION; COEFFICIENTS; REGRESSION;
D O I
10.1088/1361-6420/ab7d2a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For O a bounded domain in R-d and a given smooth function g : O -> R, we consider the statistical nonlinear inverse problem of recovering the conductivity f > 0 in the divergence form equation. del center dot (f del u) = g on O, u = 0 on partial derivative O, from N discrete noisy point evaluations of the solution u = u(f) on O. We study the statistical performance of Bayesian nonparametric procedures based on a flexible class of Gaussian (or hierarchical Gaussian) process priors, whose implementation is feasible by MCMC methods. We show that, as the number N of measurements increases, the resulting posterior distributions concentrate around the true parameter generating the data, and derive a convergence rate N-lambda, lambda > 0, for the reconstruction error of the associated posterior means, in L-2(O)-distance.
引用
收藏
页数:35
相关论文
共 50 条
  • [2] Bayesian inference with rescaled Gaussian process priors
    van der Vaart, Aad
    van Zanten, Harry
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 433 - 448
  • [3] BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS
    Knapik, B. T.
    van der Vaart, A. W.
    van Zanten, J. H.
    [J]. ANNALS OF STATISTICS, 2011, 39 (05): : 2626 - 2657
  • [4] The statistical inverse problem of scatterometry: Bayesian inference and the effect of different priors
    Heidenreich, Sebastian
    Gross, Hermann
    Wurm, Matthias
    Bodermann, Bernd
    Baer, Markus
    [J]. MODELING ASPECTS IN OPTICAL METROLOGY V, 2015, 9526
  • [5] STATISTICAL GUARANTEES FOR BAYESIAN UNCERTAINTY QUANTIFICATION IN NONLINEAR INVERSE PROBLEMS WITH GAUSSIAN PROCESS PRIORS
    Monard, Francois
    Nickl, Richard
    Paternain, Gabriel P.
    [J]. ANNALS OF STATISTICS, 2021, 49 (06): : 3255 - 3298
  • [6] Bayesian Multitask Classification with Gaussian Process Priors
    Skolidis, Grigorios
    Sanguinetti, Guido
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2011 - 2021
  • [7] ON BAYESIAN-INFERENCE FOR THE INVERSE GAUSSIAN DISTRIBUTION
    BETRO, B
    ROTONDI, R
    [J]. STATISTICS & PROBABILITY LETTERS, 1991, 11 (03) : 219 - 224
  • [8] Posterior Contraction in Bayesian Inverse Problems Under Gaussian Priors
    Agapiou, Sergios
    Mathe, Peter
    [J]. NEW TRENDS IN PARAMETER IDENTIFICATION FOR MATHEMATICAL MODELS, 2018, : 1 - 29
  • [9] Gaussian Process Priors for View-Aware Inference
    Hou, Yuxin
    Heljakka, Ari
    Solin, Arno
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7762 - 7770
  • [10] Posterior consistency of logistic Gaussian process priors in density estimation
    Tokdar, Surya T.
    Ghosh, Jayanta K.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (01) : 34 - 42