Chen's conjecture and its generalization

被引:0
|
作者
Sun, Xuegong [1 ]
Dai, Lixia [2 ]
机构
[1] Huaihai Inst Technol, Sch Sci, Lianyungang 222005, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chen's conjecture; Powers of 2; Primes; Selberg's sieve method; INTEGERS; PRIME; SUM; NUMBERS; POWERS;
D O I
10.1007/s11401-013-0798-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l (1), l (2), ..., l (g) be even integers and x be a sufficiently large number. In this paper, the authors prove that the number of positive odd integers k a parts per thousand currency sign x such that (k + l (1))(2), (k + l (2))(2), ..., (k + l (g) )(2) can not be expressed as 2 (n) + p (alpha) is at least c(g)x, where p is an odd prime and the constant c(g) depends only on g.
引用
收藏
页码:957 / 962
页数:6
相关论文
共 50 条
  • [1] Chen's Conjecture and Its Generalization
    Xuegong SUN
    Lixia DAI
    [J]. Chinese Annals of Mathematics,Series B, 2013, (06) : 957 - 962
  • [2] Chen’s conjecture and its generalization
    Xuegong Sun
    Lixia Dai
    [J]. Chinese Annals of Mathematics, Series B, 2013, 34 : 957 - 962
  • [3] A GENERALIZATION OF CHEN'S THEOREM ON THE ERDOS-TURAN CONJECTURE
    Yang, Quan-Hui
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (07) : 1683 - 1686
  • [4] Chen and Chvatal's conjecture in tournaments
    Araujo-Pardo, Gabriela
    Matamala, Martin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2021, 97
  • [5] A GENERALIZATION OF MURAI'S CONJECTURE
    Liu, Yanjun
    Willems, Wolfgang
    Xiong, Huan
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2024, 61 (01) : 107 - 119
  • [6] On a generalization of Artin's conjecture
    Franc, Cameron
    Murty, M. Ram
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2008, 4 (04) : 1279 - 1290
  • [7] A generalization of Kneser's conjecture
    Hajiabolhassan, Hossein
    [J]. DISCRETE MATHEMATICS, 2011, 311 (23-24) : 2663 - 2668
  • [8] A Generalization of Graham's Conjecture
    Guan, Huanhuan
    Yuan, Pingzhi
    Zeng, Xiangneng
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [9] A generalization of Geroch's conjecture
    Brendle, Simon
    Hirsch, Sven
    Johne, Florian
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (01) : 441 - 456
  • [10] A generalization of Tuza's conjecture
    Aharoni, Ron
    Zerbib, Shira
    [J]. JOURNAL OF GRAPH THEORY, 2020, 94 (03) : 445 - 462