Interpolation with symmetric polynomials

被引:3
|
作者
Carnicer, J. M. [1 ]
Godes, C. [2 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada IUMA, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Matemat Aplicada, Carretera Cuarte S-N, Huesca 22071, Spain
关键词
Bivariate polynomial interpolation; Lagrange interpolation; Berzolari-Radon sets; DISCRETE FOURIER-ANALYSIS; LAGRANGE; RK;
D O I
10.1007/s11075-016-0135-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lagrange interpolation problem on spaces of symmetric bivariate polynomials is considered to reduce the interpolation problem to problems of approximately half dimension. The Berzolari-Radon construction is adapted to these kinds of problems by considering nodes placed on symmetric lines or symmetric pairs of lines. A Newton formula for the symmetric interpolant using the Berzolari-Radon construction is proposed.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Interpolation with symmetric polynomials
    J. M. Carnicer
    C. Godés
    [J]. Numerical Algorithms, 2017, 74 : 1 - 18
  • [2] Hermite interpolation with symmetric polynomials
    Phung Van Manh
    [J]. Numerical Algorithms, 2017, 76 : 709 - 725
  • [3] Sparse interpolation of symmetric polynomials
    Barvinok, A
    Fomin, S
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1997, 18 (03) : 271 - 285
  • [4] Hermite interpolation with symmetric polynomials
    Phung Van Manh
    [J]. NUMERICAL ALGORITHMS, 2017, 76 (03) : 709 - 725
  • [6] Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials
    Sahi, Siddhartha
    Stokman, Jasper
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (19) : 14814 - 14839
  • [7] Field distortion correction in galvanometric scanning system by interpolation with symmetric polynomials
    Zhang, Tian
    Liang, Yufeng
    Wang, Hui
    Wu, Congyi
    Zhang, Guojun
    Huang, Yu
    Rong, Youmin
    [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2023, 83 : 134 - 141
  • [8] Hermite interpolation with symmetric polynomials associated with quadratic curves in R2
    Manh, Phung Van
    Nguyen, Phung
    Ngoc, Nguyen Anh
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024,
  • [9] On μ-symmetric polynomials
    Yang, Jing
    Yap, Chee K.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (12)
  • [10] Symmetric polynomials on
    Vasylyshyn, Taras
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (01) : 164 - 178