EXISTENCE OF SOLUTIONS FOR FRACTIONAL HAMILTONIAN SYSTEMS

被引:0
|
作者
Torres, Cesar [1 ,2 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, CNRS, UMR2071, Santiago, Chile
关键词
Liouville-Weyl fractional derivative; fractional Hamiltonian systems; critical point; variational methods; DISPERSION; EQUATION; MOTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the existence of solutions for the fractional differential equation D-t(infinity)alpha((-infinity)D(t)(alpha)u(t)) + L(t)u(t) = del W(t, u(t)), u is an element of H-alpha(R, R-N). where alpha is an element of (1/2, 1). Assuming L is coercive at infinity we show that this equation has at least one nontrivial solution.
引用
收藏
页数:12
相关论文
共 50 条